
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

StripNet: Towards Topology Consistent Strip Structure
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ABSTRACT
In this work, we propose to study a special semantic segmentation
problem where the targets are long and continuous strip patterns.
Strip patterns widely exist in medical images and natural photos,
such as retinal layers in OCT images and lanes on the roads, and seg-
mentation of them has practical significance. Traditional pixel-level
segmentation methods largely ignore the structure prior of stripped
patterns and thus easily suffer from the topological inconformity
problem, such as holes and isolated islands in segmentation results.
To tackle this problem, we design a novel deep framework, StripNet,
that leverages the strong end-to-end learning ability of CNNs to
predict the structured outputs as a sequence of boundary locations
of the target strips. Specifically, StripNet decomposes the origi-
nal segmentation problem into more easily solved local boundary-
regression problems, while putting the topological constraints on
the predicted boundaries. Moreover, our framework adopts a coarse-
to-fine strategy and uses carefully designed heatmaps for training
the boundary localization network. We examine StripNet on two
challenging strip pattern segmentation tasks, retinal layer segmen-
tation and lane detection. Extensive experiments demonstrate that
StripNet achieves excellent results and outperforms state-of-the-art
methods in both tasks.

CCS CONCEPTS
• Theory of computation → Models of learning; Structured
prediction; • Computing methodologies → Neural networks;
Instance-based learning;
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1 INTRODUCTION
In this paper we target at segmenting certain long and continuous
strip structures from input images. Strip structures widely exist in
real life scenarios, e.g., retinal layers in OCT images and lanes on
the roads, as shown in Fig. 1 (a). Understanding these structures
from images is an important computer vision task. For example,

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM Multimedia 2018, October 2018, Seoul, Korea
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SCNN StripNet

U-net StripNet

(a) (b) (c)

Figure 1: Examples of two strip structures and their seg-
mentation results by previous methods and our proposed
method StripNet. (a) retinal layers in OCT images and lanes
on the road. (b) Results of previous methods (U-net [32]
and SCNN [42]. (c) Results of StripNet. Note conventional
FCN based methods exhibit topological errors (highlighted
by rectangles), while the proposed StripNet could avoid topo-
logical inconformity problems.

segmentation of retinal layers in OCT images is the key step for the
diagnosis of some eye diseases, while lane detection plays an im-
portant role in traffic scenario understanding, which helps guiding
vehicles in autonomous driving.

The strip structures distribute contiguously as a connected com-
ponentwith no holes or isolated islands, which forms strict topology
priors. In other words, there should be no more than one connected
segmentation component in any column/row of the image. How-
ever, most previous segmentation methods do not specifically dis-
tinguish between this kind of stripped patterns and other targets.
Currently popular paradigm [5, 6, 23, 34] may segment the image is
to classify each pixel independently into one of the predefined cate-
gories. These pixel-level segmentationmethods naturally encounter
the topological inconformity problem, these various topological
errors includes isolated islands or holes in the segmentation results,
as shown in Fig. 1 (b), which require extra post-processing after
neural networks [5, 6, 25].

To address this challenging problem and fulfill the topological
constraint, we propose a novel deep architecture, called StripNet,
for segmentation of strip structures. We design a structured output
by decomposing the strips into a sequence of connected regions,
which solves the problem of inconsistent topology as shown in Fig.
1 (c). More specially, StripNet uniformly divide the whole image
into columns or rows with fixed width or height, and predicts the
existence and boundaries (if exists) of the strip in each column or
row. By doing so, at most one connected component of a strip will
be obtained, and the strip can be constrained by the boundary, as
shown in Fig. 2.

The strip structures only occupy a small portion of the image
and are difficult to directly predict its locations from whole divided
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column. Therefore, we design a coarse-to-fine approach to solve
this problem. Firstly, we roughly predict the location of strip in
each column. Since the width of the region is fixed, only the up
and down boundaries are needed to be predicted to get the rough
Region of Interest (RoI). This step does not give the exact prediction
of the strip location, but helps clean out many other unrelated areas
that may distract the prediction, and this helps a lot for the precise
prediction in next stage. Then we use RoIAlign [14] to extract the
feature in the RoI extracted from CNN, and predict the location of
the strip precisely, that is, precise boundary regression. We design
StripNet to predict the location in the form of heatmap regression in
both two stages, becausewe find that strip structures still count little
in RoI, thus directly predict one coordinate could cause deviation
easily, but heatmap can reflect the distribution of objects in regions
more directly and precisely. And this has been proved to be more
stable and accurate than directly predicting coordinates in [9, 27]
or using the anchor mechanism [31]. After that, we connect the
points obtained in precise boundary regression that belong to the
same boundary, and arrange areas between same boundaries to the
same layers, which prevent us from topological errors such as holes
and isolated areas.

To summarize, our contributions are three folds:
1) As far as we know, this work is the first attempt to develop

a deep architecture for strip segmentation which effectively inte-
grates the topological priors of strip patterns and the end-to-end
learning ability of CNNs. We elaborately design a structured output
as a sequence of proposals to guarantee the topology consistency.

2) To tackle the imbalance problem between the strip structures
to be segmented and the backgrounds, our StripNet performs seg-
mentation in a coarse-to-fine manner. In the coarse stage the region
of the strips is roughly localized in each column of the image and in
the fine stage its score and precise locations are predicted. Locations
of the strips are generated using a carefully designed heatmap, with
Gaussian kernels indicating the boundaries of the strips.

3) We evaluated the proposed framework on two distinct tasks,
i.e., retinal layer segmentation in OCT images and lane detection in
road images. Extensive experiments on publicly available dataset
(for lane detection) and self-collected dataset (for retinal layer seg-
mentation) show that our method outperforms the state-of-the-art
approaches, without having topological errors.

2 RELATEDWORK
2.1 Semantic Segmentation by Deep Learning
The task of semantic segmentation is to assign a predefined label to
each pixel on a given image. As one of the basic problems in com-
puter vision, extensive research efforts have been devoted in this
field [1, 5, 6, 22, 29]. In recent years, deep learning based methods
have dramatically improved the performance of semantic segmenta-
tion. Farabet et al [10] proposed a multi-scale convolutional neural
network (CNN) to predict the label of each image patch densely
sampled from the image, and applied superpixel voting or Condi-
tional Random Field (CRF) for improving the smoothness of the
prediction. Pinheiro et al [28] introduced a Recurrent Neural Net-
work (RNN) to recurrently refine its predictions by concatenating
the RGB image with its predicted masks as input. Both [10, 28] are
patch-based deep models, which are redundant in computation and

time-consuming. In 2015, [23] proposed the Fully Convolutional
Network (FCN) which takes the whole image as input and out-
puts the prediction in the same resolution, which is achieved by
replacing the fully connected layers with convolution layers and
adding deconvolution layers for upsampling. The design of FCN
makes semantic segmentation an end-to-end trainable problem and
largely improved the efficiency. Therefore, a lot of FCN-based works
[6, 32, 35, 43] are proposed that further boost the performance of
semantic segmentation. [32] used skip-connections between lower
layers and higher layers to add more detailed information for the
fine resolution prediction. [6] propose to refine the segmentation
results of CNN by post-processing with CRF, as the raw output of
CNN might contain isolated islands or hole errors.

Our tasks, retinal layer segmentation and lane detection, differ
from general semantic segmentation as the targets to be segmented
are long and thin regions. Moreover, each category (e.g., certain
lane or retinal layer) usually has at most one connected compo-
nent. Directly applying general semantic segmentation to these
tasks ignores the high-level structure priors and may lead to topol-
ogy errors such as isolated islands and holes. Different from the
FCN-based methods which are based on pixel-level predictions,
we integrate the high-level structure priors with the powerful ex-
pressive ability of deep models to overcome this disadvantage. We
replace the pixel-level prediction with a structured output, which
can easily eliminate topological errors.

2.2 Retinal Layer Segmentation
Automated methods for layer segmentation and measuring layer
thicknesses in OCT images have been widely studied [11, 20, 26,
26, 30]. [20, 26] exploited random forest and level set to produce
accurate boundaries of retinal layers in B-scan OCT images. For
the segmentation of 3-D spectral OCT images, a graph-theoretic
method is proposed by [11], and [30] presents a novel probabilistic
approach and achieves impressive results. In recent years, some
deep learning approaches [16, 33] apply FCN-based networks for
retinal layer segmentation. These methods leverage the strong rep-
resentation ability of deep models and perform better than conven-
tional methods. However, they still suffer from topological errors.
[16] proposed the topology correction network for refining the
topologically incorrect images. However, there is no mathematical
guarantee of the result to be topology consistent and it costs extra
time for post-processing.

2.3 Lane Detection
One commonly used approach for lane detection is to detect edges
by various kinds of filters and then use Hough transform [7, 18,
37, 38] to fit lines to these edges. However, as these methods are
based on low level features, they are very sensitive to illumination
variations or road condition changes. Inspired by the success of
deep learning methods in image classification [8, 15, 36] and seg-
mentation [6, 23], neural networks were introduced to tackle the
lane detection problem [12, 13, 17, 19, 21]. At first the CNN was
used as feature extractor [12] or for image enhancement [19]. Then
end-to-end CNN frameworks for lane detection and classification
is proposed [13, 17]. However, these aforementioned networks use
CNNs that are designed for general purpose without leveraging the
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high level structure priors. Recently, [21] combined lane detection
with vanishing point prediction task to enhance the learning of
context information. [42] propose Spatial CNN (SCNN) to learn the
spatial relationship in such long structure. Our network shows the
end-to-end leaning abilities of the previous CNN models, with the
distinction that we explicitly design a structured output to address
the topological errors problems.

2.4 Linear Structure Detection
Some methods have been proposed for linear structure detection,
such as roads in an aerial image and cell membranes in an electron
microscopy image. These problems differ from ours as the linear
structures generally have amorphous spatial extent, while both lane
detection and retinal layer segmentation tasks target at instance-
level segmentation. For linear structure detection, [40] uses a CRF
formulation whose priors are computed on higher-order cliques of
connected superpixels likely to be part of road-like structures. An-
other approach to model higher-level statistics is to represent linear
structures as a sequence of short linear segments, which can be ac-
complished using a Marked Point Process [2]. However, it requires
computationally expensive inference formulates as Reversible Jump
Markov Chain Monte Carlo. [24] designs a topology loss that is
aware of the higher-order topological features of linear structures.
It encourages topology coherent prediction results but does not
guarantee it, as all other pixel-based segmentation methods do.

3 METHOD
We propose a novel deep convolutional network, StripNet, for seg-
mentation of long and continuous strip patterns. It decomposes the
original segmentation problem into more easily solved local bound-
ary prediction problems, while preserving topology consistency
by the structured outputs. Our network follows a coarse-to-fine
philosophy, which consists of two stages: rough strip localization
and precise boundary regression.

Specifically, rough strip localization separates the whole image
into segments vertically or horizontally, and locate the strip struc-
ture in each segment roughly. Then precise boundary regression
regress the boundary of strip in each segment precisely. The main
architecture of our models are shown in Fig. 2.

For illustration, we first introduce how StripNet works for the
retinal layer segmentation task and then tell the difference of two
tasks and adapt StripNet for lane detection. Sec. 3.1 describes the
procedure and settings of rough strip localization, and a detailed de-
scription is given in Sec. 3.2to introduce precise boundary regression.
The post processing is mentioned in Sec. 3.3. And Sec. 3.4 tells the
difference and specific adaption for lane detection task.

3.1 Rough Strip Localization
Rough strip localization aims to locate the whole strip region in a
coarse way. It separates the whole image into segments vertically or
horizontally, and locate the strip structure in each segment roughly,
that is, to locate the boundary of RoI that could cover the whole
retinal layer for each segment. For a specific task, we need to iden-
tify a direction (vertical or horizontal) for predicting the structured
output, depending on the overall orientation of strip structures.
As the retinal layer distributes horizontally, StripNet predicts the

sequence of outputs in a horizontal direction. The whole image is
thus uniformly partitioned into fixed-width (e.g., 16 pixels in this
paper) segments, and the predictions will be made per segment.

In this stage, StripNet only predicts the up and down boundaries
of all the retinal layers as a whole. This is based on the observation
and experiments before that directly predicting the precise location
of each retinal layer is prone to errors, as these layers only occupy
a small portion of the slice and may be affected by distracting noise.
Therefore, we adopt the heatmap for training the network, which
is inspired by the deep pose estimation methods [9, 27, 41]. For
pose estimation, the network is trained to predict the location of
body joints on specifically designed heatmaps as shown in Fig. 3.
We generate the ground truth maps Gu and Gd by convolving a
vertical Gaussian kernel д with the up and down binary boundary
map Bu and Bd of the image, respectively

Gu (v) = д ∗ Bu (v),v = 1, 2, ...,V (1)
Gd (v) = д ∗ Bd (v),v = 1, 2, ...,V (2)

д(p) = exp
(
− p2

2σ 2

)
(3)

where σ is the variance of the Gaussian kernel, and we fix σ = 8 in
our experiments. Both G and B are 16× down-sampled.

We take the celebrated deep model VGG16 [3] as our backbone
network, and place two 1 × 1 convolution layers on top of the
16× down-sampled conv5_3 maps to generate the score maps for
regression. Batch normalization and ReLU units are adopted and
placed after each convolution layer. A sigmoid layer is applied to
transform the scores to the range of 0 to 1. And we adopt the L2
loss for training.

With the predicted heatmap, we can obtain a RoI for each column
on the heatmap that contains the retinal layers without too much
background noise. Let the i-th RoI be defined by its top and bottom
coordinates (h0i ,h

1
i ). We first identify the locations of the highest

response at each column in the predicted heatmaps Pu and Pd ,
ru (i) = argmax

j
{Pu (j, i)},

rd (i) = argmax
j

{Pd (j, i)}.
(4)

To compensate for the inaccuracies of the heatmaps and ensure
that all the retinal layers are included in the RoI, we enlarge the
search region by a constant η.{

h0i = ru (i) − η,

h1i = rd (i) + η.
(5)

After obtaining the above boundaries for each column, useful fea-
tures in RoI are extracted for precise boundary regression to regress
precise boundary between retinal layers.

3.2 Precise Boundary Regression
This stage precisely regress the boundaries between retinal layers.
In order to achieve that, we concentrate in the RoI obtained from
the former stage, where much noise has been thrown before. In
the same manner described in Sec. 3.1, we predict the heatmaps to
identify the boundaries between any two neighboring retinal layers.
Suppose there are N retinal layers to be segmented, then we have
N − 1 internal boundaries and two up and down boundaries, which
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Feature Extraction

Figure 2: Framework of the proposed StripNet. It first regress heatmap to predict the RoI that fully cover the strip structures in
each columns or rows in rough strip localization stage, then precisely regress the boundary for each strip in precise boundary
regression stage.

Figure 3: Comparisons between the label map, up boundary
map and up heatmap.

sums up to N + 1 boundaries in total. We generate the ground truth
Rt for the t-th map as

Rn = д ∗ Bn ,n = 1, 2, ...,N + 1, (6)

where Bt denotes the t-th boundary map.
For each column in feature maps, RoIAlign [14] is used to extract

and resize the features to feature vectors in a fixed height. Then we
adopt the same architecture as the one regressing the up and down
boundaries. Two 1 ∗ 1 convolution layers with batch normalization
and ReLU Units and a sigmoid layer are placed on top of RoIAlign
layer to generate the score maps.

We observe that in precise boundary regression, since we have
to map the boundary to a fixed vector, if the target length is too
short, we may not get precise boundary results. Therefore, we en-
large the height of feature vector to 200 pixels, so that we can get a
dense regression result. RoIAlign layer is adopted for this purpose
by adapting bilinear interpolation on the connected feature map.
Moreover, the sampling ratio determines the up limit of quantiza-
tion errors. So in order to decrease the sampling ratio of the feature
map, we adopt an extra upsampling architecture which is inspired

(16x)

conv4_3

conv5_3 Interpolation

conv4_1u + conv4_2u

conv3_3

Interpolation

conv3_1u + conv3_2u

(8x)

(4x)

Figure 4: Upsampling architecture for encoding more de-
tailed information.

by U-net structure as shown in Fig. 4. We apply bilinear interpola-
tion to conv5_3 feature maps and concatenate it with conv4_3, then
two 3 × 3 convolution layers are exploited to fuse the feature maps.
This architecture results in twice resolution, and furthermore pro-
vides multiscale features. We apply the same operation to conv3_3
and get 4× sampling ratio finally.

3.3 Post Processing
In a standard one-way Gaussian peak, the center value may be ex-
tremely close to its 2 direct neighbors. Such small differences raise
the difficulty for locating the center, thus leading to a minor devia-
tion if we locate the max value of the score map directly. Moreover,
the L2 loss function only guarantees the similarity between the
prediction and the ground truth map, which is a Gaussian peak, but
makes little supervision on the position of the top value. Inspired
by the geometric characteristic of the loss function, we propose a
method to choose the target position accurately by Sliding Gaussian
Peaks (SGP). We slide a one-way Gaussian peak with the same σ as
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Figure 5: Method of Sliding Gaussian peaks. The red lines
are standard Gaussian peaks and the blue line is the pre-
dicted score vector. Note how sliding Gaussian kernel gener-
ates more robust results avoids picking the local maximum
response locations.

training process along the score map and calculate the L2 distance
between the two vectors as shown in Fig. 5.

The final predicted coordinate is where the L2 distance reaches
to the minimum:

RN = argmin
t=ρ,ρ+1, ...,T

{| |s − дt | |} (7)

where s is the T × 1 score vector output from the network and R
is the final regression coordinate. дt is a vector with a one-way
Gaussian kernel placed in t . ρ is a parameter which aims to prevent
boundary disorder, and is set to 1 for N = 1 and RN−1 for N ≥ 2. In
this way, the supervision of the loss function is exploited completely,
and the final prediction is determined by the whole score map.

To obtain the final results, we first compute the exact locations
of the boundaries regressed in precise boundary regression, which
gives us n equidistant points discrete in y-axis. We connect these
points in order, and 5 fold line are generated from up to down as the
prediction of the 5 boundaries and the final segmentation results of
4 tissues are obtained. By doing so, we ensure that neither holes nor
isolated areas could appear in the segmentation results, since we
assign areas between the same boundaries belong to the same layer.
Because one boundary only correspond to one connected line, no
fault could appear, and the topological constraint is fulfilled.

3.4 StripNet for Lane Detection
As shown in Fig. 1, each lane only covers a small range of the
horizontal direction, while they almost appear at the same rows.
So it is natural to adapt StripNet to predict the sequence of output
in a vertical direction. Besides, since the lanes distribute with large
gaps between each other, we adapt StripNet to localize each lane
separately. To be more specific, we predict two heatmaps of the
left and right boundaries for each lane, respectively, instead of
two heatmaps for all lanes together. The ground truth maps are
generated in the same way as mentioned in Sec. 3.1.

Unlike OCT images, there can be no lane markings in the picture
due to occlusion or any other reasons, although lanes may still exist
and need to be predicted, with number varies from zero to four, (for

example in Fig. 1 is three), while retinal layers exist in a confirmed
number. Unlike OCT, lanes do not always go through from one side
to the other. Therefore, in lane detection, for each RoI, a score is
also predicted to suggest whether there is a lane segment. Since
the lane has a fixed width, we change to predict the centers of the
lanes. With these subtle modifications, we can get the slope and
location of the line easily and precisely.

Only when the score of a RoI is greater than a threshold, e.g.,
0.5, will the heatmap be further processed. Otherwise the RoI is
treated as a non-lane area. By the argmax operation for each row
of one heatmap, the exact relative locations of the left and right
boundaries can be acquired. Given the left and right location, using
the topology prior, the lane segments in each bounding box are
treated as a straight line, due to the small height of the bounding
box and that lane segments usually lie through the box from up to
down. These centers are connected directly to get the final output.

4 EXPERIMENTS
In this section, we conduct experiments on both OCT segmentation
and Lane detection task to evaluate the proposed StripNet.

4.1 Data and implementation details
We first evaluate StripNet on our self-collected OCT dataset. The
dataset includes a total of 1,202 DRI-OCT (Atlantis, Topcon, Tokyo,
Japan) with 579 normal people and 605 glaucoma patients and
202 Spectralis (Heidelberg, Germany) glaucoma patients. These
circular scans targeted at the center of optic disc with diameters
of 3.5mm and 3.4mm respectively. These images are all manually
delineated by three doctors, and each image is at least labeled by
two doctors. We ask a senior doctor to visually inspect the labeling
results and choose the better ones as the final label maps. A total
of 4 retinal layers are labeled, including RNFL, GCC, Retina and
Choroid. We split all DRI-OCT scans into 1051/151 for training and
testing respectively, and no patient is included simultaneously in
both sets. The StripNet is only trained on DRI-OCT images while
tested on both DRI-OCT and Heidelberg Spectralis images.

The training process is divided into two phases. We first feed the
ground truth of the rough prediction as the input of the RoIAlign
layer and the precise regression block for training the later part of
the network. Then we use the prediction of the rough prediction in
replace of ground truth for joint training of both stages. We adopt
the stochastic gradient descent for optimization with batch size
1. We train the whole network for 50 epochs, using a decreased
learning rate from 10−5 to 10−7 by reducing learning rate by 0.1
when training for 30, 40 and 45 epochs. The VGG16 model is pre-
trained on a large-scale dataset ImageNet for image classification.
The whole framework is implemented with the caffe library.

4.2 Ablation Study
In this chapter, extensive experiments are conducted verify the
effectiveness of each component in StripNet.

4.2.1 Evaluation of Rough Strip Localization. The first part of
StripNet aims at giving a rough while robust location of the retinal
layer, which needs to cover the total retina layers roughly. So we
conduct an experiment to assess its performance by comparing it
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with a widely used regression strategy which regresses the normal-
ized coordinates directly. We implement the coordinate regression
method by placing two convolution layers after conv53 feature map
to produce 2 coordinates of the up and down boundaries in each
column. The first convolution layers are set to 7 × 1 kernel with
5 × 1 stride padding 1, and 9 × 1 kernel with stride 1 padding 0.
The architecture outputs a 2 × 1 × 79 score map which denotes the
normalized coordinate offset of the up and down boundaries in 79
columns. We compare these methods by referring to the perfor-
mance of precise regression architecture. For fair comparison, these
two experiments are trained in common and shares parameters
from conv11 to conv53. The rough localization architecture is set
with 16× sampling ratio and RoIAlign layer extracts feature vector
with 120 in height. For testing, to ascertain the up limit of the rough
localization, a ground truth group is also added into comparison,
where we set the ground truth as the input of precise regression.
Moreover, in order to deduct the error caused by rough localization,
we utilize a method of expand the selection area of RoI to 16 pixels
higher and this method is applied in the above experiments. All
these comparisons are reported in Table. 1, which shows that our
method outperforms the traditional coordinate regression method
especially in RNFL and Choroid layer, while the performance in
GCC and Regina differs a little between all 3 experiments. This is
because that RNFL and Choroid are at the top and bottom of the
total layer, thus they are more sensitive to the error of boundary
prediction than the other 2 inboard layers.

Table 1: Comparison between twomethods of rough localiza-
tion and the ground truth. The ‘+’ marked group has expand
their selection area to 16 pixels higher.

Method RNFL GCC Retina Choroid mean

Coordinate 77.94 71.75 91.92 82.52 81.03
Gaussian Map 82.33 71.12 92.27 85.81 82.88
Ground Truth 87.16 73.63 92.72 88.58 85.52
Coordinate+ 84.89 73.35 92.70 85.91 84.21
Gaussian Map+ 85.76 73.68 92.83 86.68 84.74
Ground Truth+ 86.48 73.70 92.70 87.67 85.14

We also observe that the application of selection expanding lifts
the performance of our method but reduces the performance of the
ground truth group. Because this operation improves the recall of
the total layer, but leads to more background noise at the same time.
So it also can be inferred that we should enlarge the selecting area
of RoI to a right degree, neither too small nor too large. A set of
experiments shows that 8 pixel is one of the compromised choices,
and we use this setting in all the subsequent experiments.

4.2.2 Evaluation of Precise Boundary Regression. In this step,
we target at regressing the position of the boundary in each RoI
precisely. Firstly, we adapt RoI pooling to extract feature vector
in each RoI. RoI pooling layer is designed for extracting features
in various aspect ratios into a fix-sized rectangular. Specifically, it
works by dividing the RoI into α × β sub-windows and then max
pool the features in each sub-window. However, the performance of
RoI pooling is not good, because the rounding operation to the coor-
dinate introduces misalignments between the RoI and the extracted

feature maps, which leads to unexpected deviations especially in
our tasks. Therefore, we adopt RoIAlign layer in replace of RoI pool-
ing. RoIAlign layer uses bilinear interpolation to compute the exact
values of the input features at four regularly sampled locations. It
guarantees the spatial correspondence between the features and the
images and is of vital importance in our tasks because both retinal
layers and lanes are sensitive to small misalignments. The change
from RoI pooling to RoIAlign brings large improvements as shown
in Table. 2. Both experiments are positioned in 16× sampling ratio
and extract feature map with 120 in height.

Table 2: The performance comparison of RoIAlign layer and
RoI pooling layer.

Method RNFL GCC Retina Choroid mean

RoI pooling 72.43 58.87 86.21 80.11 74.16
RoIAlign 84.91 73.20 92.89 86.89 84.47

As is illustrated in Sec. 3.3 , the final segmentation result benefits
from the density degree of RoI and the height of extracted feature
vectors. The density of RoI is fixed and determined by the size of
the input image and the sampling ratio. So we change the sampling
ratio for 3 stages, 16×, 8×, and 4×. The heights of feature vectors
are selected as 40 ,120, 160. In this experiment, we adapt RoIAlign
layer to extract feature maps in RoI. The results shown in Table. 3
confirms the point that in the same sampling ratio, the performance
of the StripNet shows an overall upward trend as the height of
extracted feature vector increases or the sampling ratio decreases.
Moreover, for those in height 40, we observe that the 4× and 8×
sampling group obtains similar performances. This is because in the
two groups, the bottlenecks of raising performance are the height
of the feature vectors.

Table 3: Experimental results of various sampling ratio and
the target length of the feature vector after RoIAlign.

Rate RoI height RNFL GCC Retina Choroid mean

16 40 84.40 72.08 92.30 86.4 83.80
16 120 84.91 73.2 92.89 86.89 84.47
16 200 85.08 73.88 93.03 86.86 84.71

8 40 86.78 74.91 93.22 87.92 85.71
8 120 87.36 75.85 93.69 88.42 86.33
8 200 87.89 76.83 93.92 88.44 86.77

4 40 86.99 74.4 93.07 87.65 85.53
4 120 88.59 75.19 93.79 88.31 86.47
4 200 89.65 76.91 94.05 89.12 87.43

4.2.3 Evaluation of Sliding Gaussian Peak. This method slides
the standard Gaussian peak along the score map and calculates L2
loss directly for each position as the final score, and then locate the
position where has the minimum L2 loss as the final prediction. SGP
is proposed as a more precise reprocessing step in replacement of
the traditional method that locates the max value of the score map
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roughly. Table. 4 shows that this method improves the performance
of all layers in StripNet.

Table 4: Comparison between argmax and sliding Gaussian
peaks for precise boundary prediction.

Method RNFL GCC Retina Choroid mean

arg max 89.65 76.91 94.05 89.12 87.43
Sliding peak 90.02 78.17 94.46 89.25 87.98

4.2.4 Comparisons with Existing Methods. In this section, we
compare StripNet with three deep models including Deeplab-v3 [4],
U-net [32] and S-net [16]. All the three models are pretrained on
COCO dataset. For fair comparison, all models are trained for 50
epochs with batch size 1 in Topcon DRI-OCT training set without
any data augmentation. Moreover, the state-of-the-art Random
Forest (RF) + graph method [39] is also added for comparison. It
makes use of manual-crafted features and performs excellent on
both Heidelberg Spectralis and Zeiss Cirrus images. We trained RF
using randomly selected 56 images in training set with 60 trees
and 10 subjects for each tree. As RF + graph is not designed for
recognizing the bottom boundary Choroid in our dataset, we leave
it unlabeled in Table. 5. Some examples are shown in Fig. 6.

Table 5: Comparison with state-of-art models on Topcon
DRI-OCT test set.

Method RNFL GCC Retina Choroid mean

Deeplab-v3 [4] 89.28 76.71 93.89 86.53 86.60
U-net [32] 88.06 77.24 94.15 87.55 86.75
S-net [16] 88.54 77.19 94.04 85.68 86.36

RF+graph [39] 86.19 69.72 90.75 - -
StripNet,4×,200 90.02 78.17 94.46 89.25 87.98

Table. 5 shows that our StripNet outperforms all these deep
models as well as the traditional RF+Graph method. Traditional
deep models have no restriction on the topology structure of the
final precision, whichmay lead to boundary disorders, isolated areas
or even holes, while the proposed StripNet ensures the consistency
of topology. The RF+Graph method also avoids topology errors, but
its manually-crafted features are largely effected by the variation
of the input images, which leads to a deterioration in performance.

Then, we test these models on the Heidelberg Spectralis images
to compare their generalization abilities between different manufac-
turers. The Spectralis OCT differs from DRI-OCT in many aspects
such as scale, noise level and length-width ratio. The test results
are shown in Table. 6 and visualizations are given in Fig. 6.

From the results we can see that StripNet has strong general-
ization abilities and obtains the best performance. This is because
between two brands of OCT image, there are certain differences in
the internal gray scale, but their topology structure is guaranteed
and the characteristics of each tissue vary little. so the method
of regression boundaries is more effective for segmentation. The
utilization of the heat map and rough prediction architecture gives

Table 6: Comparison with state-of-art models onHeidelberg
Spectralis images.

Method RNFL GCC Retina Choroid mean

Deeplab-v3 [4] 15.89 23.96 48.85 40.88 32.39
U-net [32] 86.79 60.22 87.31 75.80 77.53

S-net [16] [16] 84.36 59.56 77.98 70.64 73.14
RF+graph [39] 83.53 68.09 77.39 - -
StripNet,4×,200 91.46 79.65 93.51 87.48 88.03

more position-sensitive guidances to the network, and decreases
the influence of background noises. Moreover, the structured output
guarantees the topology consistency, thus leading to the excellent
performance in Spectralis OCT images. However, The traditional
FCN-based deep segmentation models are more sensitive to the
variation of the gray scale, thus causing a sharp decrease on final
performance. For Deeplab-V3, the specially designed atrous con-
volution layer enhances the ability of segment objects at multiple
scale. But in this test set, the atrous convolution introduces more
noise and got the worst performance. The RF+Graph method also
shows the topology-correct segmentation results, but still performs
unsatisfactory. However, StripNet aims at regressing the boundaries
and pays more attention to the differences in characteristics of the
adjacent organizations, thus offsets the noise from the variations
of inputs. Then, the structured output confirms the consistency of
the topology, and thus performs excellent in Spectralis images. .

4.3 Lane detection
4.3.1 Data and Implementation Details. The precise regression

architecture is pretrained firstly on CULane dataset for segmenta-
tion, using standard SGD with batch size 12, basic learning rate 0.01,
momentum 0.9, and weight decay 0.0001. The policy for learning
rate is ‘poly’ with power and iteration number set to 0.9 and 60k,
respectively. Then the rough prediction architecture is added for
joint end-to-end training using the same strategy with iteration
number of 30k.

We evaluate StripNet on CULane dataset [42], which is currently
the biggest lane detection dataset including 8 challenging scenarios.
And these scenarios account for 72.3 % of the dataset. For evaluation,
the lane markings are viewed as lines with widths of 30 pixels
and the intersection-over-union (IoU) is calculated between the
ground truth and the prediction. Predictions whose IoUs are larger
than certain threshold are viewed as true positives (TP), and the
threshold is 0.5 for strict evaluations. Then F1-measure is employed
to evaluate methods’ performance on CULane datasets.

4.3.2 Comparison with state-of-art methods. To verify the ef-
fectiveness of StripNet in lane detection, we compare it with sev-
eral methods: ResNet-50 (Baseline) model, SCNN, SCNN++, SCNN-
StripNet and Res50-StripNet. Our ResNet-50 (baseline) model is
modified based on the LargeFOV model [6]. We modify the stride
in ‘conv4_1’ of ResNet-50 [15] to 1 to change the resolution of the
feature map to be 8× downsampled. The SCNN is released by [42],
which performs best in CULane dataset. To verify whether the im-
provement of StripNet is brought by simply adding more model

Submission ID: 247. 2018-04-09 07:29. Page 7 of 1–9.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM Multimedia 2018, October 2018, Seoul, Korea Paper ID 247

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 7: Comparison with other methods, with IoU threshold=0.5. For crossroad, only False Positive (FP ) are shown

Category Normal Crowded Dazzle light Shadow No line Arrow Curve Crossroad Night Total

ResNet-50 [15] 86.1 64.2 53.5 59.7 36.9 78.1 62.3 2092 59.7 66.2
Res50-StripNet 86.7 65.3 55.5 66.6 39.2 79.7 63.9 2468 61.4 67.4
SCNN [42] 90.6 69.7 58.5 66.9 43.4 84.1 64.4 1990 66.1 71.6
SCNN++ 90.7 69.7 58.9 69.7 44.1 84.9 64.9 1891 65.9 71.9

SCNN-StripNet 90.8 69.9 60.0 69.7 44.5 85.3 66.1 2020 66.9 72.2

Label Deeplab U-net S-net Rf+G StripNetInput

Figure 6: Comparisons between results of FCN-based models and StripNet. The first two rows are DRI-OCT images, and the
third row is Spectralis image.

ResNet-50 Res50-StripNetLabel SCNN SCNN++ SCNN-StripNet Input

Figure 7: Comparisons between lane detection results of ResNet, Res50-StripNet, SCNN, SCNN++ and SCNN-StripNet

parameters, we replace the original upsample layer with stride 8 to
2 deconvolution layer with stride 2 to get a deeper SCNN, named
SCNN++.We test our method using ResNet-50 (Baseline) and SCNN,
which are Res50-StripNet and SCNN-StripNet respectively. To get
a finer regression output, we upsample the 36*100 feature map
obtained in the former stage to 72*200. And we segment the feature
map into 36 slices horizontally, predict four boxes in each slice for
each lane, which is totally 144. We draw a lane segment based on
the heatmap if the score threshold is greater than 0.5. All experi-
ments are implemented on the Torch7. The test results on different
challenging scenarios are shown in Table. 7.

The Baseline result is consistent with the result of ResNet-50
shown in [42]. And the SCNN result is the same as [42], which is
previously the best result in CULane dataset. From the results, we
can see that increasing parameters to get a deeper network brings
little improvement, while our method improves both in ResNet-50
and SCNN. This indicates StripNet’s generalization ability across
different backbone models. What is more, our method outperforms
other methods especially in shadow or dazzle light cases, where
FCNs are faced with topological errors due to dark or reflective
circumstances. The comparison examples in shadow and dazzle
light scenarios are shown in Fig. 7, holes, isolated islands appear

in outputs of conventional FCNs, but StripNet avoid this problems
due to good use of topological constraints.

5 CONCLUSIONS
In this paper, we propose StripNet to segment long and continuous
strip patterns in different image modalities. StripNet avoids to make
topological segmentation errors by specially the structured output,
which decomposes the original segmentation problem into more
easily solved boundary-regression problems, in a coarse-to-fine
manner. The experimented results show that StripNet achieves
state-of-the-art performance in both retinal layer segmentation and
lane detection tasks, and has good generalization abilities across
datasets and backbone architectures.
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