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Abstract—In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep
learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation
constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training
strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability.
By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of
models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach
improves the mean averaged precision obtained by RCNN [16], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014
detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also
provided through extensive experimental evaluation, which provides a global view for people to understand the deep learning object

detection pipeline.

Index Terms—CNN, convolutional neural networks, object detection, deep learning, deep model

1 INTRODUCTION

Object detection is one of the fundamental challenges in
computer vision and has attracted a great deal of research
interest [11], [50]. Intra-class variation in appearance and
deformation are among the main challenges of this task.
Because of its power in learning features, the convolutional
neural network (CNN) is being widely used in recent large-
scale detection and recognition systems [60], [54], [21], [27],
[82], [81]. Since training deep models is a non-convex op-
timization problem with millions of parameters, the choice
of a good initial point is a crucia but unsolved problem,
especially when deep CNN goes deeper [60], [54], [27]. It
is aso easy to overfit to a small training set. Researchers find
that supervised pretraining on large-scale image classification
data and then finetuning for the target object detection task
is a practical solution [10], [45], [78], [16]. However, we
observe that there is still a gap between the pretraining task
and the finetuning task that makes pretraining less effective.
The problem of the training scheme is the mismatch between
pretraining for the image classification task and fine-tuning for
the object detection task. For image classification, the input is
a whole image and the task is to recognize the object within
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this image. Therefore, learned feature representations have
robustness to scale and location change of objects in images.
Taking Fig. 1(a) as an example, no matter how large and where
a person is in the image, the image should be classified as
person. However, robustness to object size and location is not
required for object detection. For object detection, candidate
regions are cropped and warped before they are used as input
of the deep model. Therefore, the positive candidate regions
for the object class person should have their locations aigned
and their sizes normalized. On the contrary, the deep model
is expected to be sensitive to the change in position and
size in order to accurately localize objects. An example to
illustrate the mismatch is shown in Fig. 1 (a). Because of such
mismatch, the image classification task is not an ideal choice
to pretrain the deep model for object detection. Therefore, a
new pretraining scheme is proposed to train the deep model
for object detection more effectively.

Part deformation handling is a key factor for the recent
progress in object detection [12], [83], [13], [73], [37]. Our
new CNN layer is motivated by three observations. First,
deformable visual patterns are shared by objects of different
categories. For example, the circular visual pattern is shared
by both banjo and ipod as shown in Fig. 1(b). Second, the
regularity on deformation exists for visual patterns at different
semantic levels. For example, human upper bodies, human
heads, and human mouths are parts at different semantic levels
with different deformation properties. Third, a deformable part
at a higher level is composed of deformable parts at a lower
level. For example, a human upper body is composed of a head
and other body parts. With these observations, we design a new
deformation-constrained pooling (def-pooling) layer to learn
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Figure 1. The motivation of this paper in new pretraining
scheme (a) and jointly learning feature representation and
deformable object parts shared by multiple object classes at
different semantic levels (b). In (a), a model pretrained on image-
level annotation is more robust to size and location change
while a model pretrained on object-level annotation is better in
representing objects with tight bounding boxes. In (b), when ipod
rotates, its circular pattern moves horizontally at the bottom of
the bounding box. Therefore, the circular patterns have smaller
penalty moving horizontally but higher penalty moving vertically.
The curvature part of the circular pattern are often at the bottom
right positions of the circular pattern. Magnitudes of deformation
penalty are normalized to make them comparable across the
two examples in (a) for visualization. Best viewed in color.

the shared visual patterns and their deformation properties
for multiple object classes at different semantic levels and
composition levels.

The performance of deep learning systems depends signifi-
cantly on implementation details [4]. However, an evaluation
of the performance of the recent deep architectures on the
common ground for large-scale object detection is missing.
As a respect to the investigation on details in deep learning
[4], [16], this paper compares the performance of recent
deep models, including AlexNet [25], ZF [75], Overfeat [52],
and GoogLeNet [60] under the same setting for different
pretraining-finetuning schemes. We also provide experimental
analysis on the properties that cause the accuracy variation in
different object classes.

In this paper, we propose a deformable deep convolutional
neural network for object detection; named as Deepl D-Net.
In DeeplD-Net, we jointly learn the feature representation
and part deformation for a large number of object cate-
gories. We also investigate many aspects in effectively and
efficiently training and aggregating the deep models, including
bounding box rejection, training schemes, context modeling,

and model averaging. The proposed new framework signif-

icantly advances the state-of-the-art for deep learning based

generic object detection, such as the well known RCNN [ 16]

framework. This paper also provides detailed component-wise

experimental results on how our approach can improve the
mean Averaged Precision (AP) obtained by RCNN [ 16] from

31.0% to mean AP 50.3% step-by-step on the ImageNet Large

Scale Visual Recognition Challenge 2014 (ILSVRC2014) ob-

ject detection task.

The contributions of this paper are as follows:

1) A new deep learning framework for object detection. It
effectively integrates feature representation learning, part
deformation learning, context modeling, model averaging,
and bounding box location refinement into the detec-
tion system. Detailed component-wise analysis is provided
through extensive experimental evaluation. This paper is
aso the first to investigate the influence of CNN structures
for the large-scale object detection task under the same
setting. By changing the configuration of this framework,
multiple detectors with large diversity are generated, which
leads to more effective model averaging.

2) A new scheme for pretraining the deep CNN model.
We propose to pretrain the deep model on the ImageNet
image classification and localization dataset with 1000-
class object-level annotations instead of with image-level
annotations, which are commonly used in existing deep
learning object detection [ 16], [60]. Then the deep model is
fine-tuned on the ImageNet/PASCAL-VOC object detection
dataset with 200/20 classes, which are the target object
classes in the two datasets.

3) A new deformation constrained pooling (def-pooling) layer,
which enriches the deep model by learning the deformation
of object parts at any information abstraction levels. The
def-pooling layer can be used for replacing the max-pooling
layer and learning the deformation properties of parts.

4) Analysison the object propertiesthat influence the variation
in object detection accuracy for different classes.
Preliminary version of this paper is published in [ 38]. This

paper include more analysis on the proposed approach and add

experimental investigation on the properties that influence the
accuracy in detecting objects.

The models pretrained by both image-level annotation and
object-level annotation for AlexNet [25], ZF [75], overfeat
[52] and GoogLeNet [60] and the models after fine-tuning
on ILSVRC2014 are provided online .

2 RELATED WORK

Since many objects have non-rigid deformation, the ability
to handle deformation improves detection performance. De-
formable part-based models were used in [12], [83], [41],
[70], [65] for handling translational movement of parts. To
handle more complex articulations, size change and rotation
of parts were modeled in [ 13], and mixture of part appearance
and articulation types were modeled in [ 3], [72]. A dictionary
of shared deformable patterns was learned in [20]. In these
approaches, features were manually designed.

1. www.ee.cuhk.edu.hk/~wlouyang/projects/| mageNet
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Because of the power on learning feature representation,
deep models have been widely used for object recognition, de-
tection and other vision tasks [25], [52], [75], [21], [53], [85],
[19], [27], [16], [35], [40], [76], [77], [33], [29], [57], [59],
[57], [58], [31], [32], [30], [80], [79], [68], [69], [19], [47],
[26], [46], [34], [39], [42], [43]. Krizhevsky et al. proposed
a neural network with 60 million parameters and 650,000
neurons [25]. This neural network was the first to show the
power of deep CNN in large-scale computer vision task. Later
on, Razavian et al. [45] showed that the OverFeat network
[52] trained for object classification on ILSVRC13 was a good
feature representation for the diverse range of recognition tasks
of object image classification, scene recognition, fine grained
recognition, attribute detection and image retrieval applied to
a diverse set of datasets. As a further step of using the model
trained for ImageNet object classification, Girshick et al. found
finetuning the CNN pretrained on the ImageNet object classi-
fication to be effective on various object detection benchmark
datasets [16]. In existing deep CNN models, max pooling and
average pooling were useful in handling deformation but could
not learn the deformation penalty and geometric models of
object parts. The deformation layer was first proposed in [ 36]
for pedestrian detection. In this paper, we extend it to general
object detection on ImageNet. In [36], the deformation layer
was constrained to be placed after the last convolutional layer.
In this work the def-pooling layer can be placed after all the
convolutional layers to capture geometric deformation at all
the information abstraction levels. In [36], it was assumed
that a pedestrian only had one instance of a body part, so
each part filter only had one optimal response in a detection
window. In thiswork, it is assumed that an object has multiple
instances of a part (e.g. a car has many wheels), so each part
filter is allowed to have multiple response peaks in a detection
window. Moreover, we allow multiple object categories to
share deformable parts and jointly learn them with a single
network. This new model is more suitable for general object
detection.

The use of context has gained attention in recent works
on object detection. The context information investigated in
literature includes regions surrounding objects [ 5], [8], [14],
object-scene interaction [9], [22], and the presence, location,
orientation and size relationship among objects [ 2], [64], [66],
(71, [44], [14], [56], [9], [74], [8], [71], 401, [6], [51], [61].
In this paper, we use whole-image classification scores over
a large number of classes from a deep model as global
contextual information to refine detection scores.

Besides feature learning, deformation modeling, and context
modeling, there were also other important components in the
object detection pipeline, such as pretraining [16], network
structures [52], [75], [25], refinement of bounding box loca
tions [16], and model averaging [ 75], [25], [21]. While these
components were studies individually in different works, we
integrate them into a complete pipeline and take a global
view of them with component-wise analysis under the same
experimental setting. It is an important step to understand and
advance deep learning based object detection.
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Figure 2. Overview of our approach. Detailed description is
given in Section 3.1. Texts in red highlight the steps that are
not present in RCNN [16].
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3 METHOD
3.1 Overview of our approach

An overview of our proposed approach is shown in Fig. 2. We
take the ImageNet object detection task as an example. The
ImageNet image classification and localization dataset with
1,000 classes is chosen to pretrain the deep model. Its object
detection dataset has 200 object classes. In the experimental
section, the approach is also applied to the PASCAL VOC. The
pretraining data keeps the same, while the detection dataset
only has 20 object classes. The steps of our approach are
summarized as follows.

1) Selective search proposed in [55] and edgeboxes proposed
in [84] are used to propose candidate bounding boxes.

2) An existing detector, RCNN [16] in our experiment, is
used to reject bounding boxes that are most likely to be
background.

3) An image region in a bounding box is cropped and fed
into the DeeplD-Net to obtain 200 detection scores. Each
detection score measures the confidence on the cropped
image containing one specific object class. Details are given
in Section 3.2.

4) The 1000-class whole-image classification scores of a deep
model are used as contextual information to refine the
detection scores of each candidate bounding box. Details
are given in Section 3.6.

5) Average of multiple deep model outputsis used to improve
the detection accuracy. Details are given in Section 3.7.

6) Bounding box regression proposed in RCNN [16] is used
to reduce localization errors.

3.2 Architecture of DeeplD-Net

DeeplD-Net in Fig. 3 has three parts:

(8 The baseline deep model. The ZF model proposed in [ 75]
is used as the default baseline deep model when it is not
specified.

Branches with def-pooling layers. The input of these layers
is the convb, the last convolutional layer of the baseline
model. The output of conv5 is convolved with part filters
of variable sizes and the proposed def-pooling layers in
Section 3.4 are used to learn the deformation constraint
of these part filters. Parts (a)-(b) output 200-class object
detection scores. For the cropped image region that contains
a horse as shown in Fig. 3(a), its ideal output should have
a high score for the object class horse but low scores for
other classes.

(b)
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Figure 3. Architecture of DeeplD-Net with three parts: (a) base-
line deep model, which is ZF [75] in our single-model detector;
(b) layers of part filters with variable sizes and def-pooling layers;
(c) deep model to obtain 1000-class image classification scores.
The 1000-class image classification scores are used to refine
the 200-class bounding box classification scores.

(c) The deep model (ZF) to obtain image classification scores
of 1000 classes. Its input is the whole image, as shown
in Fig. 3(c). The image classification scores are used as
contextual information to refine the classification scores of
bounding boxes. Detail are given in Section 3.6.

3.3 New pretraining strategy

The widely used training scheme in deep learning based object
detection [16], [78], [60] including RCNN is denoted by
Scheme 0 and described as follows:

1) Pretrain deep models by using the image classification task,
i.e. using image-level annotations from the ImageNet image
classification and localization training data.

2) Fine-tune deep models for the object detection task, i.e.
using object-level annotations from the object detection
training data. The parameters learned in Step (1) are used
as initialization.

The deep model structures at the pretraining and fine-tuning
stages are only different in the last fully connected layer for
predicting labels (1, 000 classes for the ImageNet classification
task vs. 200 classes for the ImageNet detection task). Except
for the last fully connected layers for classification, the pa
rameters learned at the pretraining stage are directly used as
initial values for the fine-tuning stage.

We propose to pretrain the deep model on a large auxiliary
object detection training data instead of the image classifica
tion data. Since the ImageNet Cls-Loc data provides object-
level bounding boxes for 1000 classes, more diverse in content
than the ImageNet Det data with 200 classes, we use the
image regions cropped by these bounding boxes to pretrain
the baseline deep model in Fig. 3(8). The proposed pretraining
strategy is denoted as Scheme 1 and bridges the image- vs.
object-level annotation gap in RCNN.

1) Pretrain the deep model with object-level annotations of
1,000 classes from ImageNet Cls-Loc train data.

2) Fine-tune the deep model for the 200-class object detection
task, i.e. using object-level annotations of 200 classes from
ImageNet Det train and val; (validation set 1) data. Use
the parametersin Step (1) as initialization.

Compared with the training scheme of RCNN, experimental

results show that the proposed scheme improves mean AP by

4.5% on ImageNet Det val, (validation set 2). If only the 200

target classes (instead of 1,000 classes) from the ImageNet

Cls-Loc train data are selected for pretraining in Step (1), the

mean AP on ImageNet Det val, drops by 5.7%.

Ancther potential mismatch between pretraining and fine-
tuning comes from the fact that the ImageNet classification
and localization (Cls-Loc) data has 1,000 classes, while the
ImageNet detection (Det) data only targets on 200 classes,
most of which are within the 1,000 classes. In many practical
applications, the number of object classes to be detected is
small. People question the usefulness of auxiliary training data
outside the target object classes. Our experimental study shows
that feature representations pretrained with 1, 000 classes have
better generalization capability, which leads to better detection
accuracy than pretraining with a subset of the Cls-Loc data
only belonging to the 200 target classes in detection.

3.4 Def-pooling layer
3.4.1 DPM and its relationship with CNN

In the deformable part based model (DPM) [12] for object

detection, the following steps are used at the testing stage:

1) Extract HOG feature maps from the input image.

2) Obtain the part detection score maps by filtering the HOG
feature maps with the learned part filters/detectors. The part
filters are learned by latent SVM.

3) Obtain deformable part score maps by subtracting defor-
mation penalty from part detection score maps.

4) Sum up the deformable part score maps from multiple parts
to obtain the final object detection score map.

Denote the convolutional layer at the Ith layer by conuv;.

Denote the output maps of conv; by M!. The steps above

for DPM have the following relationship for CNN:

1) The HOG feature map in DPM corresponds to the output
of a convolutional layer. Consecutive convolutional layers
and pooling layers can be considered as extracting feature
maps from input image.

2) The part detection maps in DPM correspond to the output
response maps of the convolutional layer. For example, the
output of conv;_, is the feature maps M!~!, which are
treated as input feature maps of conwv;. Filtering on HOG
feature maps using part filtersin DPM is similar to filtering
on the feature maps M'~! using the filters of conv; in
CNN. Each output channel of conwv; corresponds to a part
detection map in DPM. The filter of conv; for an output
channel corresponds to a part filter in DPM. The response
map in CNN is called part detection map in the following
of this paper.

3) The deformation penalty in DPM for each part corresponds
to the deformation penalty in our proposed def-pooling
layer for CNN. Details are given in Section 3.4.2.
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Figure 4. The relationship between the operations in the DPM
and the CNN.

4) Summing up the deformable part score maps for multiple
partsin DPM is similar to summing up multiple def-pooling
layer output maps with a special case of convolutional layer.
Def-pooling layer output maps can be summed up by using
a convolutional layer after the def-pooling layer with filter
size 1 x 1 and filter coefficients being constant 1 for the
convolutional layer.

In summary, HOG feature extraction, part detector filtering,

deformation penalty subtraction and part detection scores

aggregation in DPM [12] have their corresponding operations

in the CNN as shown in Fig. 4.

3.4.2 Definition of the def-pooling layer

Similar to max-pooling and average-pooling, the input of a
def-pooling layer is the output of a convolutional layer. The
convolutional layer produces C' maps of size W x H. Denote
M. as the cth map. Denote the (i j)th element of M. by

EL’J), i=1,....,W,5 = 1,. . The def-pooling Iayer
takes a small block with center ( ) and size 2R+ 1) x

(2R+1) from the M. and produce the element of the output
as follows:

ply) —

7 C T sV, b 1

55, P Me(2s, 5,5 0z, Oy) 1)

wherezx =1,... Wy=1,..., H, 2
Me(2s, .5, 00, 0y) = me ™™ — $(6x,0y) €)
25,6, = [T, y]T [0z,8y]", @
0(6:.5,) Zac w25, (5)

(z,y) denotes the assumed anchor location of object part.
(02, 9,) denotes the translation/displacement of object part
from the anchor position.

e 75,5, as defined in (4) is the deformed location from the
assumed anchor position.

« me =™ in (3) is the element in M. at the location z, s, .
It is considered as the score of matching the cth part filter
with the features at the deformed location zs, s, -

o ¢(05,0,) in (3) and (5) is the deformation penalty of
placing the part from the assumed anchor position (z,y)
to the deformed location zs,,s5,. ac. and di’f;;,‘sy in (5)
are parameters of deformation that can be pre-defined or
learned by back-propagation (BP). N denotes the number
of parameters a. , and d¢5; "

o Me(25,,5,,02,0y) iN (1) and (3) is the deformable part
score. It is obtained by subtracting the deformation penalty
(6., 0,) from the visual matching score m."*"*" .

« %Y is the (z,y)th element of the output of the def-

pooling layer. For the anchor location (z,y), b"Y is

obtained by taking the maximum deformable part score

me(2zs,,5,,0z,0y) Within the displacement range R, i.e.

0z,0y € {—R,--- ,R}.

The def-pooling layer can be better understood through the
following examples.

Examplel If N=1,a,=1,d,"" =0for |0,],|dy] <k
and d = oo for |d,|,|d,] > k, then this corresponds
to max—pooling with kernel size k. It shows that the max-
pooling layer is a specia case of the def-pooling layer.
Penalty becomes very large when deformation reaches certain
range. Since the use of different kernel sizes in max-pooling
corresponds to different maps of deformation penalty that can
be learned by BP, def-pooling provides the ability to learn the
map that implicitly decides the kernel size for max poolmg

Example 2. If N = 1 and a,, = 1, then d =% s the
deformation parameter/penalty of moving a part from the
anchor location (x y) by (6T,6 ). If the part is not allowed to
move, we have d°"° = 0 and d; by _ = oo for (64, d,) # (0,0).
If the part has penalty 1 when it is not at the assumed
location (z,y), then we have d%° = 0 and = = 1 for
(0z,9,) # (0,0). It alows to assign different penalty to
displacement in different directions. If the part has penalty
2 moving leftward and penalty 1 moving rightward, then we
have d3*° = 1 for 6, < 0 and d*"® = 2 for &, > 0. Fig.
6 shows some learned deformation parameters dé*’éy Fig. 7
shows some visualized parts.

Example 3. The deformation layer in [36] is a specia
case of the def-pooling layer by enforcing that zs, 5, in (1)
covers all the locations in conv;_; ; and only one output with
a pre-defined location is alowed for the def-pooling layer
(ilee R =00, s, = W, and s, = H). The proof can be
found in Appendix A. To implement quadratlc deformation
penalty used in [12], we can predefine {d }n 1,234 =
{84, 6y, (62)%, (0,)?} and learn parameters a,,. As shown in
Appendix A, the def-pooling layer under this setting can
represent deformation constraint in the deformable part based

model (DPM) [12] and the DP-DPM [19].
Take Example 2 as an example for BP learning. a. ,, is the
parameter in this layer and d.. is pre-defined constant. Then

5asd,

we have:
862“” dA ),
Oten (6)
(Aa, Ay) = agmaX, 5 o g py{me™™ = ¢(d0,0,)}-
e sdye{ }

where (A, A,) is the positlon with the maximum value in
(2). The gradients for the parameters in the layers before the
def-pooling layer are back-propagated like max-pooling layer.

Similar to max-pooling and average pooling, subsampling
can be done as follows:

b((:aj_’y) _ Béswm,sy.y) (D

For M of size W x H, the subsampled output has size
sﬂ . Therefore, multiple instances of an object part at
multlple anchor locations are allowed for each part filer.

In our implementation, N = 1, R = 2 and Example 2
is used for def-pooling, there are no fully connected layers
after conv7,2,3 in Fig. 3. We did not find improvement on
ImageNet by further increasing N and R. Further study on N
and R could be done on other datasets and particular categories
in the future work.
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Figure 5. Def-pooling layer. The part detection map and the
deformation penalty are summed up. Block-wise max pooling is
then performed on the summed map to obtain the output B of
size % x &£ (3 x 1 in this example).
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Figure 6. The learned deformation penalty for different visual
patterns. The penalties in map 1 are low at diagonal positions.
The penalties in map 2 and 3 are low at vertical and horizontal
locations separately. The penalties in map 4 are high at the
bottom right corner and low at the upper left corner.

3.4.3 Analysis

A visua pattern has different spatial distributions in different
object classes. For example, traffic lights and ipods have
geometric constraints on the circular visual pattern in Fig.
8. The weights connecting the convolutional layers corv7 -
conv7s in Fig. 3 and classification scores are determined by
the spatia distributions of visual patterns for different classes.
For example, the car class will have large positive weights in
the bottom region but negative weights in the upper region for
the circular pattern. On the other hand, the traffic light class
will have positive weights in the upper region for the circular
pattern.

A single output of the convolutional layer conv7 in Fig. 3
is from multiple part scoresin def6,. The relationship between
parts of the same layer def6; is modeled by conv7,.
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Figure 7. The learned part filters visualized using deepdraw [ 1].
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Figure 8. Repeated visual patterns in muItlpIe object classes.
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The def-pooling layer has the following advantages.

1) It can replace any pooling layer, and learn deformation
of parts with different sizes and semantic meanings. For
example, at ahigher level, visual patterns can be large parts,
e.g. human upper bodies, and the def-pooling layer can
capture the deformation constraint of human upper parts.
At amiddle level, the visual patterns can be smaller parts,
e.g. heads. At the lowest level, the visual patterns can be
very small, e.g. mouths. A human upper part is composed
of a deformable head and other parts. The human head is
composed of a deformable mouth and other parts. Object
parts at different semantic abstraction levels with different
deformation constraints are captured by def-pooling layers
at different levels. The composition of object parts is
naturally implemented by CNN with hierarchical layers.

2) The def-pooling layer allows for multiple deformable parts
with the same visua cue, i.e. multiple response peaks are
allowed for one filter. This design is from our observation
that an object may have multiple object parts with the same
visual pattern. For example, three light bulbs co-exist in a
traffic light in Fig. 5.

3) As shown in Fig. 3, the def-pooling layer is a shared
representation for multiple classes and therefore the learned
visual patternsin the def-pooling layer can be shared among
these classes. As examples in Fig. 8, the learned circular
visual patterns are shared as different object parts in traffic
lights, cars, and ipods.

The layers proposed in [36], [18] does not have these ad-

vantages, because they can only be placed after the final

convolutional layer, assume one instance per object part, and
does not share visual patterns among classes.

3.5 Fine-tuning the deep model with hinge-loss

In RCNN, feature representation is first learned with the
softmax loss in the deep model after fine-tuning. Then in a
separate step, the learned feature representation is input to a
linear binary SVM classifier for detection of each class. In our
approach, the softmax loss is replaced by the 200 binary hinge
losses when fine-tuning the deep model. Thus the deep model
fine-tuning and SVM learning steps in RCNN are merged
into one step. The extra training time required for extracting
features (~ 2.4 days with one Titan GPU) is saved.

3.6 Contextual modeling

The deep model learned for the image classification task (Fig.
3 (c)) takes scene information into consideration while the
deep model for object detection (Fig. 3 (a) and (b)) focuses
on local bounding boxes. The 1000-class image classification
scores are used as contextual features, and concatenated with
the 200-class object detection scores to form a 1200 dimen-
sional feature vector, based on which a linear SVM is learned
to refine the 200-class detection scores. For a specific object
class, not all object classes from the image classification model
are useful. We learn a two-stage SVM to remove most of the
classes. In the first stage, all scores from the 1000 classes
are used for learning a linear SVM. At the second stage,
the 10 classes with the largest magnitude in the linear SVM
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Figure 9. The SVM weights on image classification scores (a)
for the object detection class volleyball (b).

weights learned in the first stage are selected as features and
then a linear SVM s learned for a given object class to be
detected. Therefore, only the classification scores of 10 classes
from the image classification deep model are used for each
class to be detected. The SVM is explicitly trained but not
within the network framework. If 5, 20, 50, 100 or 1000
classes are used, the mAP drops by 0, 0.2%, 0.8%, 0.9% and
4.5% respectively when compared with the result of using 10
classes. This result shows that only a few number of classes
are helpful for detection. The heuristic selection of 10 classes
helps to remove the effect from uncorrelated classes.

Take object detection for class volleyball as an example
in Figure 9. If only considering local regions cropped from
bounding boxes, volleyballs are easy to be confused with
bathing caps and golf balls. In this case, the contextual infor-
mation from the whole-image classification scores is helpful,
since bathing caps appear in scenes of beach and swimming
pools, golf balls appear in grass fields, and volleyballs appear
in stadiums. The whole images of the three classes can be
better distinguished because of the global scenery information.
Fig. 9 plots the learned linear SVM weights on the 1000-class
image classification scores. It is observed that image classes
bathing cap and golf ball suppress the existence of volleyball
in the refinement of detection scores with negative weights,
while the image class volleyball enhances the detection score
of volleyball.

3.7 Combining models with high diversity

Model averaging has been widely used in object detection. In
existing works [ 75], [25], [21], the same deep architecture was
used. Models were different in cropping images at different
locations or using different learned parameters. In our model
averaging scheme, we learn models under multiple settings.
The settings of the models used for model averaging are shown
in Table 4. They are different in net structures, pretraining
schemes, loss functions for the deep model training, adding
def-pooling layer or not. The motivation is that models gen-
erated in thisway have higher diversity and are complementary
to each other in improving the detection results after model
averaging. For example, although model no. 4 has low mAPR,
it is found by greedy search because its pretraining scheme
is different from other models and provides complementary
scores for the averaged scores.

The 6 models as shown in Table 4 are automatically selected
by greedy search on ImageNet Det val , from 10 models, and
the mAP of model averaging is 50.3% on the test data of
ILSVRC2014, while the mAP of the best single model is
47.9%.

Animal

Figure 10. Fraction of high-scored false positives on VOC-
2007 that are due to poor localization (Loc), confusion with

similar objects (Sim), confusion with other VOC objects (Oth),
or confusion with background or unlabeled objects (BG).

Vehicle

Furniture

Ours:

4 EXPERIMENTAL RESULTS

Our experimental results are implemented based on the Caffe
[24]. Only selective search is used for proposing regions if not
specified.

Overall result on PASCAL VOC. For the VOC-2007 detec-
tion dataset [11], we follow the approach in [16] for splitting
the training and testing data. Table 1 shows the experimental
results on VOC-2007 testing data, which include approaches
using hand-crafted features [17], [48], [63], [62], [12], deep
CNN features [16], [21], [15], [47], [46], [68], and CNN
features with deformation learning [ 18]. Since al the state-
of-the-art works reported single-model results on this dataset,
we also report the single-model result only. Our model was
pretrained on bounding box annotation, with deformation,
without context, and with GoogLeNet as the baseline net.
Ours outperforms RCNN [16] and SPP [21] by about 5% in
mAP. RCNN, SPN and our model are al pre-trained on the
ImageNet Cls-Loc training data and fine-tuned on the VOC-
2007 training data. Table 2 shows the per-class mAPs for our
approach with G-Ntt and RCNN with VGG and GoogleNet
[16]. Fig. 10 shows the analysis on false positives using the
approach in [23].

Overall result on MS-COCO. Without using context, our
single model has mAP 25.6% on the MS-COCO Test-dev
dataset [28].

Experimental Setup on ImageNet. The ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) 2014 [49]
contains two different datasets: 1) the classification and lo-
calization (Cls-Loc) dataset and 2) the detection (Det) dataset.
The training data of Cls-Loc contains 1.2 million images with
labels of 1,000 categories. It is used to pretrain deep models.
The same split of train and validation data from the Cls-Loc
is used for image-level annotation and object-level annotation
pretraining. The Det contains 200 object categories and is
split into three subsets, train, validation (val), and test data.
We follow RCNN [16] in splitting the val data into val; and
val,. Val; is used to train models, val, is used to evaluate
separate components, and test is used to evaluating the overall
performance. The val ;/val; split is the same as that in [16].

Overall result on ImageNet Det. RCNN [16] is used as
the state-of-the-art for comparison. The source code pro-
vided by the authors was used and we were able to re-
peat their results. Table 3 summarizes the results from
ILSVRC2014 object detection challenge. It includes the best
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Table 1
Detection mAP (%) on VOC-2007 test. All approaches are trained on VOC-2007 data. Bounding box regression is used in DPM,
SPP, RCNN, RCNN-V5, fRCN, and our approach. Only a single model is used for all approaches.

approach DPM HSC-DPM Regionlet Flair DP-DPM SPP RCNN RCNN-v5 fRCN RPN YOLO Superpixel Label [ours
(11 [49] (63 [62 [18 [21] [16]  [16]  [15] [47] [46] [64]
337 343 417 333 452 585 631 660 669 67.6 59.1 614 69.0

Table 2
VOC-2007 test detection average precision (%) for RCNN using VGG and our approach.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

RCNN+VGG 73.477.0 63.4 454 44.6 75.178.179.8 40.5 73.7 62.2 79.4 781 731 642 356 66.8 67.2 70.4 71.1 66.0
RCNN+G-Net 73.7 72.4 65.4 47.2 44.6 71.2 774742 42.6 71.1 575 722 727 749 625 37.8 679 66.4 653 70.9 64.4
Ours+G-Net 77.1 76.8 75.6 54.5 51.9 76.1 79.5 77.7 48.0 78.2 61.1 821 781 761 659 354 753 67.2 71.7 71.9 69.0

Table 3
Detection mAP (%) on ILSVRC2014 for top ranked approaches with single model (sgl) and average model (avg).

approach Flair RCNN Berkeley Vision UvA-Euvision Deeplnsight GoogLeNet Superpixel Label|ours

[62] [16] [16] [59] [67] [60] [69]
ImageNet val, (avg) nfa n/a n/a n/a 42 445 454 50.7
ImageNet val, (sgl) n/a 310 334 n/a 40.1 388 42.8 48.2
ImageNet test (avg) 22.6 nl/a n/‘a n/a 40.5 439 45.0 50.3
ImageNet test (sgl) n/a 31.4 345 35.4 40.2 38.0 425 479

Table 4

Models used for model averaging. The result of mAP is on val ,
without bounding box regression and context. For net design,
D-Def(O) denotes our DeeplD-Net that uses def-pooling layers

using Overfeat as baseline structure, D-Def(G) denotes
DeeplD-Net that uses def-pooling layers using GoogLeNet as
baseline structure, G-net denotes GooglLeNet. For pretraining,
0 denotes the pretraining scheme of RCNN [16], 1 denotes the
Scheme 1 in Section 3.3. For loss of net, h denotes hinge loss,
s denotes softmax loss. Bounding box rejection is used for all

models. Selective search and edgeboxes are used for

proposing regions.

model number 1 2 3 4 5 6

net design D-Def(O) D-Def(G) G-net G-net D-Def(G) D-Def(G)
Pretrain 1 1 1 0 1 1

loss of net h h s S h h
mAP (%) 43.3 47.3 455 421 47.3 449

results on the test data submitted to ILSVRC2014 from
GoogLeNet [60], Deeplnsight[67], UvA-Euvision[55], Berke-
ley Vision[16], which ranked top among &l the teams par-
ticipating in the challenge. In terms of single-model and
model averaging performance, we achieve the highest mAP.
It outperforms the winner of ILSVRC2014, GoogleNet, by
6.1% on mAP. Table 4 shows the 6 models we used in model
averaging.

4.1 Ablation study

The ImageNet Det is used for ablation study. Bounding box
regression is not used if not specified.

4.1.1 Baseline deep model and bounding box rejection

As shown in Fig. 3, a baseline deep model is used in our
DeeplD-Net. Table 5 shows the results for different baseline
deep models and bounding box rejection choices. AlexNet in
[25] is denoted as A-net, ZF in [75] is denoted as Z-net, and
Overfeat in [52] is denoted as O-net. GoogLeNet in [60] is

denoted as G-net. Except for the two components investigated
in Table 5, other components are the same as RCNN, while the
new training schemes and the new components introduced in
Section 3.2 are not included. The configuration in the second
column of Table 5 is the same as RCNN (mean mAP 29.9%).
Based on RCNN, applying bounding box rejection improves
mAP by 1%. Therefore, bounding box rejection not only saves
the time for training and validating new models, which is
critical for future research, but also improves detection accu-
racy. Bounding box rejection is not constrained to particular
detectors such as RCNN or fast RCNN. The time required
to process one image is around 3.5 seconds per image using
RCNN and around 0.2 seconds using fast RCNN. Both with
bounding box rejection, ZF [ 75] performs better than AlexNet
[25], with 0.9% mAP improvement. Overfeat [52] performs
better than ZF, with 4.8% mAP improvement. GoogL eNet [ 60]
performs better than Overfeat, with 1.2% mAP improvement.

Experimental results in Table 5 show the further investi-
gation on the influence of bounding box rejection scheme
in training and testing stage. Experimental results on two
different CNN architectures, i.e. A-net and Z-net, show that
the mAP is similar whether the rejection scheme in the testing
stage is used or not. And the rejection scheme in the training
stage is the main factor in improving the mAPR. If there is
concern that the regjection scheme results in lower recall of the
candidate windows at the testing stage, the rejection scheme
at the testing stage can be skipped. If not specified, bounding
box rejection is used in both training and testing stages.

4.1.2 Investigation on the number of object classes at
the pretraining stage

In order to investigate the influence from the number of object
classes at the pretraining stage, we use the AlextNet and
train on the ImageNet classification data without using the
bounding box labels. Table 7 shows the experimental resullts.
As pointed out in [50], the 200 classes in ImageNet detec-
tion corresponds to 494 classes in ImageNet classification.
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Table 5
Study of bounding box (bbox) rejection and baseline deep
model on ILSVRC2014 val,. Pretrained without bounding box
labels. Def-pooling, context and bounding box regression are

not used.
bbox rejection? n y y y y
deep model  A-net A-net Z-net O-net G-net
mAP (%) 299 309 318 36.6 378
meadian AP (%) 289 294 305 36.7 37

Table 6
Study of bounding box (bbox) rejection at the training and
testing stage without context or def-pooling. Pretrained without
bounding box labels. Def-pooling, context and bounding box
regression are not used.

bbox rejection train? n y y y y
bbox rejection test? n y n y n

deep model A-net A-net A-net Z-net Z-net
mAP (%) 299 309 308 318 315
meadian AP (%) 289 294 293 305 304

Therefore, we investigate three pretraining settings: 1) use the
corresponding 494-class samples in ImageNet classification
training data but train the deep model as a 200-class classifi-
cation problem; 2) use the corresponding 494-class samplesin
ImageNet classification training data and train the deep model
as a 494-class classification problem; 3) use the 1000-class
samples in ImageNet classification training data and train the
deep model as a 1000-class classification problem. The same
fine-tuning configuration is used for these three pretraining
settings. Experimental results show that 494-class pretraining
performs better than 200-class pretraining by 3% mAP. 1000-
class pretraining performs better than 494-class pretraining by
4.3% mAP. 3000-class pretraining further improves the mAP
by 2.4% compared with 1000-class pretraining. For 3000-class
pretraining, each sample carries much more information: for
an apple image, the 3000-class pretraining provides further
information that it is not the other 2999 classes. And the use
of more classes makes the training task challenging and not
easy to overfit.

4.1.3 Investigation on def-pooling layer

Different deep model structures are investigated and results are
shown in Table 8 using the new pretraining scheme in Section
3.3. Our DeeplD-Net that uses def-pooling layers as shown
in Fig. 3 is denoted as D-Def. Using the Z-net as baseline
deep model, the DeeplD-Net that uses def-pooling layer in
Fig. 3 improves mAP by 2.5%. Def-pooling layer improves
mMAP by 2.3% for both O-net and G-net. This experiment
shows the effectiveness of the def-pooling layer for generic
object detection. In our implementation of def-pooling for G-

Table 7
Study of number of classes used for pretraining. AlexNet is
used. Pretrained without bounding box labels. Def-pooling,
context and bounding box regression are not used.
number of classes 200 494 1000 3000

mAP (%) 226 256 200 323
meadian AP (%) 19.8 23.0 289 31.7

Table 8
Investigation on def-pooling for different baseline net structures
on ILSVRC2014 val,. Use pretraining scheme 1 but no
bounding box regression or context.
net structure Z-net D-Def(Z) O-net D-Def(O) G-net D-Def(G)
mAP (%) 360 385 391 414 404 427
meadian (%) 349 374 379 419 393 423

net, we only replace max-pooling by def-pooling but did not
add an additional feature maps like that in Fig. 3(b). 2.3%
mAP improvement is still observed on G-net by replacing the
max-pooling with def-pooling.

4.1.4 Investigation on different pretraining schemes and
baseline net structures

There are two different annotation levels, image and object.
Table 9 shows the results for investigation on annotation levels
and net structures. When producing these results, other new
components introduced in Section 3.4-3.6 are not included.
For pretraining, we drop the learning rate by 10 when the
classification accuracy of validation data reaches plateau, until
no improvement is found on the validation data. For fine-
tuning, we use the same initial learning rate (0.001) and the
same number of iterations (20,000) for dropping the learning
rate by 10 for al net structures, which is the same setting in
RCNN [16].

Pretraining on object-level-annotation performs better than
pretraining on image-level annotation by 4.4% mAP for A-net
and 4.2% for Z-net. This experiment shows that object-level
annotation is better than image-level annotation in pretraining
deep model.

4.1.5 Investigation on the overall pipeline

Table 10 summarizes how performance gets improved by
adding each component step-by-step into our pipeline. RCNN
has mAP 29.9%. With bounding box rejection, mAP is im-
proved by about 1%, denoted by +1% in Table 10. Based
on that, changing A-net to Z-net improves mAP by 0.9%.
Changing Z-net to O-net improves mAP by 4.8%. O-net to G-
net improves mAP by 1.2%. Replacing image-level annotation
by object-level annotation in pretraining, mAP is increased
by 2.6%. By combining candidates from selective search and
edgeboxes [84], mAP is increased by 2.3%. The def-pooling
layer further improves mAP by 2.2%. Pretraining the object-
level annotation with multiple scales [4] improves mAP by
2.2%. After adding the contextual information from image
classification scores, mAP isincreased by 0.5%. Bounding box
regression improves mAP by 0.4%. With model averaging, the
final result is 50.7%.

4.2 Per-Class Accuracy as a Function of Object
Properties on ILSVRC14 Object Detection Data

Inspired by the analysis in [50], we perform anaysis on the
object propertiesthat influence the variation in object detection
accuracy for different classes in this section. Our result with
50.7% mAP on the val2 data is used for analysis.
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Figure 11. The mean average precision of our best-performing
model in the y axis as a function of real-word size (left), deforma-

bility (middle), and texture (right) in the x axis.
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Figure 12. The mean average precision of our best-performing
model in the y axis as a function of the variance in aspect
ratio (left), part existence (middle) and in-plane, out-plane ro-
tation(right). The x axis denotes the average variance of each

group.
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For real-world size, deformability, and amount of texture,
the following conclusion on the detection accuracy as a
function of these object properties can be drawn from the
experimental results in Fig. 11:

Real-world size, XS for extra small (e.g. nail), small (e.g.
fox), medium (e.g. bookshelf), large (e.g. car) or XL for extra
large (e.g. airplane). The object detection model performs
similar on extra small, small or medium ones, which is
different from the optimistic model in [50]. It performs better
on extralarge and large objects, with extralarge objects having
the highest mean AP (close to 70%).

Deformability within instance, Rigid (eg., mug) or de-
formable (e.g., snake). Similar to [50], we aso find that
deformable objects have higher accuracy than rigid objects.

Amount of texture, none (e.g. punching bag), low (e.g.
horse), medium (e.g. sheep) or high (e.g. honeycomb). The
model is better on objects with at least median level of texture
compared to untextured or low textured objects.

The three properties above are investigated in [50] using
optimistic model, i.e. directly compare al the entries in the
past 3 years to obtain the most optimistic measurement of
state-of-the-art accuracy on each category. Using our best
performing model, similar conclusion can be drawn.

In the following, we investigate new properties that we
found influential to object detection accuracy. Object classes
are sorted in ascending order using these properties and then
uniformly grouped, i.e. al groups have the number of classes.

Variance in aspect ratio. Aspect ratio is measured by the
width of the object bounding box divided by the height of the
bounding box. Objects with large variance in aspect ratio, e.g.
band aid and nail, are more likely to be slim and have large
variation in rotation, which result in the drastic appearance
change of the visual information within the object bounding
box. Therefore, as shown in Fig. 12, objects with lower
variance in aspect ratio performs better.

Variance in part existence. Many objects have some of
their parts not existing in the bounding box because of
occlusion or tight-shot. The variation in part existence causes

10

the appearance variation for object of the same class. For
example, a backpack with only its belt in the bounding box
is very different in appearance from a backpack with its bag
in the bounding box. We labeled the object parts and their
existences for al the 200 classes on the vall data and use
them for obtaining the variance in part existence. As shown in
Fig. 12, objects with lower variance in part existence performs
better.

Variance in rotation. In-plane and out-of-plane rotation are
factors that influence the within-class appearance variation. An
ax with frontal view is very different in appearance from an ax
with side view. An upright ax is very different in appearance
from a horizontal ax. We labeled the rotation of objects for all
the 200 classes on the val 1 data and use them for obtaining the
variance in rotation. As shown in Fig. 12, objects with lower

variance in rotation performs better.
Number of objects per image. The number of object per
image for the cth object class, denoted by N, is obtained as

follows:
P

1

Ne= 4 Z:j(n) ®)
where n,,, is the number of objects within the image of the
peth sample for class ¢, p. = 1..., P.. N, is obtained from
the vall data. When there are large number objects within an
image, they may occlude each other and appear as background
for the ground truth bounding box of each other, resulting in
the added complexity of object appearance and background
clutter. As shown in Fig. 13, some small objects, bee and
butterfly, have less than 2 objects per image on average. And
they have very high AP, 90.6% for butterfly and 76.9% for
bee. We find that the images in vall with these samples are
mostly captured by tight shot, and they have relatively simple
background. As shown in Fig. 13, the model performs better
when the number of objects per image is smaller.

15 1

10

5

. 00 50 100 150 200 2.08 4.13 5.52 7.09 9.77
Figure 13. Number of objects per image for different classes

(left) and the detection accuracy as a function of the average
number of objects per image.

Mean area per bounding box. We measure the size of the
bounding box by the area (width multiplied by height) of this
bounding box. We did not use the bounding box size over
image size in [50] because the image size may have influence
on image classification and object localization but should have
small influence on object detection, in which bounding box
is independently evaluated. As shown in Fig. 14, the average
areafor different objects varies alot. Sofa has the largest mean
area. Although butterfly and bee are extra small in real-world
size, they are large in average areas, 36.8k for bee and 57.7k
for butterfly. As shown in Fig. 13, the average AP is higher
when the mean area per bounding box is larger.

Recall from region proposal. In our model, selective search
and edgeboxes are used for proposing the regions. After
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Figure 14. The average size of the bounding box for different
classes (left) and the detection accuracy as a function of the
average number of objects per image.

bounding box rejection, 302 boxes per image are obtained
on vall. The average recall is 89.19% for overlap greater than
0.5 and 78.98% for overlap greater than 0.7.

Fig. 15 shows the 5 classes with lowest and highest average
precision and their corresponding factors. The 5 object classes
with the lowest accuracy are mostly none-deformable, having
low texture, small bounding box size, large number of objects
per image, large variation in aspect ratio, part existence and
rotation.

We aso tried other properties, like variation in bounding
box size, average aspect ratio, number of positive samples, but
did not find them to have strong correlation to the detection
accuracy.

Fig. 16 shows the object classes with large mAP improve-
ment and mAP drop when the def-pooling is used. 140 of
the 200 classes have their mAP improved. Def-pooling brings
large mMAP gains for mammals like squirrel with deformation
and instruments like banjo with rotation. However, man-made
objects such as waffle iron, digital clock, cocktail shaker
and vacuum have inconsistent existence of object parts, large
variation in rotation and part appearance. Therefore, the mAP
gains are negative for these man-made objects.

Fig. 17 shows the detection accuracy for object classes
grouped at different WordNet hierarchical levels. It can be seen
that vertebratesthat are neither mammal nor fish, i.e. bird, frog,
lizard, snake, and turtle, have the largest mMAP. Mammals also
have large mAP because mammals share similar appearance,
have rich texture and have many object classes that help
each other in learning their feature representations. Generally,
artifacts have lower mAP because they have low texture and
large variation in shape. Texts in dashed boxes of Fig.
17 show the absolute mAP gain obtained by bounding box
rejection and def-pooling for each group. It can be seen that
def-pooling has 9.5% mAP gain for detecting person. Def-
pooling has higher mAP gain (4.6%) for mammalswith regular
deformation and part appearance than substances (0.4%) with
irregular deformation and part appearance.

5 APPENDIX A: RELATIONSHIP BETWEEN THE
DEFORMATION LAYER AND THE DPM
The quadratic deformation constraint in [12] can be repre-
sented as follows:

S (d) o (d) A3 v2 o a4 2

m =m a1 (i b1+2a1) az(j b2+2a2) v (9
where m(»7) is the (i,j)th element of the part detection

map M, (b1, b2) is the predefined anchor location of the pth
part. They are adjusted by as/2a; and a4/2as, which are
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Figure 15. The factors for the 5 object classes with lowest AP
(top) and highest AP (bottom). The y axis denotes the group in-
dex g for the factors in Fig. 11-14, e.g. deformation (¢ = {0,1}),
real-world size (g = {1,...,5}), texture (¢ = {1,...,4}), box
size (9 = {1,...,5}). Larger g denotes higher deformation,
real size, texture etc. The x axis corresponds to different object
classes, e.g. ski, ladle, with different factors, e.g. deformation,
real size, texture. Legends denote different object classes.
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Figure 16. The factors for the object classes with mAP
improvement (top) and mAP drop (bottom) introduced by the
def-pooling. The meaning of x and y axes are the same as 15.
Legends denote different object classes and their mAP change
caused by def-pooling.

automatically learned. a; and ao (9) decide the deformation
cost. There is no deformation cost if a1 = as = 0. Parts are
not alowed to move if a; = as = oo. (b, be) and (22, 24

2a1 ? 2a2

jointly decide the center of the part. The quadratic constraint
in Eq. (9) can be represented using Eq. (1) as follows:
(B9 = (B9) aldgi’j) — agdéi’j) — agdéi’j) — a4df’j) —as,
i = (i~ b1)*, ) =( — )", dgT =i b,

dfj"j) =7 — bg, as = a32/(4a1) =+ a42/(4a2). (10)

In this case, a1, as2,a3 and a4 are parameters to be learned
and a7 for n = 1,2,3,4 are predefined. as is the same in
all locations and need not be learned. The final output is:

b= maxrh(i’j),
(4,9)
where 7m(7) is the (i, j)th element of the matrix M in (9).

(11)

6 CONCLUSION

This paper proposes a deep learning based object detection
pipeline, which integrates the key components of bound-
ing box reject, pretraining, deformation handling, context
modeling, bounding box regression and model averaging. It
significantly advances the state-of-the-art from mAP 31.0%
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Figure 17. The detection accuracy for object classes grouped
at different WordNet hierarchical levels. Tilted text at the upper
right of the circle denotes the number of classes within the 200
object classes of the ILSVRC14 detection task for this WordNet
synonym set (synset). Texts at the upper left of the circle denote
the absolute mAP gain obtained by bounding box rejection and
def-pooling. Un-tilted text below the circle denote the mAP in
percentage for this WordNet synset. For example, the WordNet
synset ‘matter’ has height 13, 22 object classes and mAP
49.7%, bounding box rejection has mAP gain of 1.34% and
the def-pooling has mAP gain of 0.4%. The ‘other vertebrates’
denotes the object classes that are vertebrates but not mammal
or aguatic vertebrate, similarly for ‘other artifacts’ and ‘other
instruments’.

46.5 66.1 56.4

(obtained by RCNN) to 50.3% on the ImageNet object task.
Its single model and model averaging performances are the
best in ILSVC2014. A global view and detailed component-
wise experimental analysis under the same setting are provided
to help researchers understand the pipeline of deep learning
based object detection.

We enrich the deep model by introducing the def-pooling
layer, which has great flexibility to incorporate various defor-
mation handling approaches and deep architectures. Motivated
by our insights on how to learn feature representations more
suitable for the object detection task and with good generaliza-
tion capability, a pretraining scheme is proposed. By changing
the configurations of the proposed detection pipeline, multiple
detectorswith large diversity are obtained, which leadsto more
effective model averaging. This work shows the important
modules in an object detection pipeline, although each has
its own parameter setting set in an ad hoc way. In the future,
we will design an end-to-end system that jointly learns these
modules.
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Table 9
Ablation study of the two pretraining schemes in Section 3.3 for different net structures on ILSVRC2014 val». Scheme 0 only uses
image-level annotation for pretraining. Scheme 1 uses object-level annotation for pretraining. Def-pooling bounding box regression
and context are not used.
net structure  A-net A-net A-net Z-net Z-net Z-net Z-net O-net O-net G-net G-net
class number 1000 1000 1000 1000 200 1000 1000 1000 1000 1000 1000
bbox rejection  n n y y n n y y y y y
pretrain scheme 0 1 1 0 1 1 1 0 1 0 1
mAP (%) 299 343 349 318 299 356 36.0 366 39.1 37.8 404
meadian AP (%) 28.9 334 344 305 29.7 340 349 36.7 379 370 393

Table 10
Ablation study of the overall pipeline for single model on ILSVRC2014 val2. It shows the mean AP after adding each key
component step-by-step.
detection pipeline  RCNN +bbox A-net Z-net O-net image to bbox +edgbox +Def +multi-scale +context +bbox

rejection to Z-net to O-net to G-net  pretrain ~ candidate pooling  pretrain regression
mAP (%) 29.9 30.9 31.8 36.6 37.8 40.4 2.7 449 47.3 47.8 48.2
meadian AP (%) 28.9 29.4 30.5 36.7 37.0 39.3 42.3 45.2 47.8 48.1 49.8
mAP improvement (%) +1 +09  +4.8 +1.2 +2.6 +2.3 +2.2 +2.4 +0.5 +0.4
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