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a b s t r a c t

Magnetic Resonance Fingerprinting (MRF) is a novel technique that simultaneously estimates multiple
tissue-related parameters, such as the longitudinal relaxation time T1, the transverse relaxation time T2,
off resonance frequency B0 and proton density, from a scanned object in just tens of seconds. However,
the MRF method suffers from aliasing artifacts because it significantly undersamples the k-space data. In

tissue-related parameters based on the MRF method. It is more robust to low sampling ratio and is
therefore more efficient in estimating MR parameters for all voxels of an object. Furthermore, the MRF
method requires identifying the nearest atoms of the query fingerprints from the MR-signal-evolution
dictionary with the L2 distance. However, we observed that the L2 distance is not always a proper metric
to measure the similarities between MR Fingerprints. Adaptively learning a distance metric from the
undersampled training data can significantly improve the matching accuracy of the query fingerprints.
Numerical results on extensive simulated cases show that our method substantially outperforms state-
of-the-art methods in terms of accuracy of parameter estimation.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Quantitative multiparametric acquisition in magnetic resonance
imaging has long been the goal of research because it provides means
of evaluating pathology using absolute tissue characteristics rather
than contrast-based approaches [1]. It involves quantification of
longitudinal relaxation time T1, transverse relaxation time T2, off
resonance frequency B0, proton density and other relevant parameters
at each voxel of the scanned object. In most previous work, T1 and T2
are determined in separate scans [2–7]. Some recent methods can
simultaneously estimate several parameters [8–10] but are restricted
to only a limited set of parameters.

The Magnetic Resonance Fingerprinting (MRF) method recently
proposed by [11] has the potential to quantitatively examine more
than 4 magnetic resonance parameters simultaneously. The MRF
method is based on the Inversion recovery-balanced SSFP (IR-bSSFP)
[12] sequences. It has been reported that MRF outperforms the widely
used DESPOT1 and DESPOT2 [7] methods for T1 and T2 estimation. It
can also be used to directly estimate the combination proportions of
different types of tissues at every single voxel. This may lead to new
diagnostic methodologies.

The key idea of the MRF method is similar to matching a person's
fingerprint to a database: once a match is made, additional informa-
tion about the person can be obtained simultaneously. The MRF
method generates unique signal evolutions by scanning a slice of the
object for T times with randomized system-related parameters. After
applying the inverse Fourier transformation, the T-dimensional vector
at every voxel location represents its characteristic signal evolution
and is called its Magnetic Resonance Fingerprint [11]. Different tissues
(such as white matter, gray matter, and cerebrospinal fluid) are
assumed to have their own unique magnetic resonance fingerprints.
These fingerprints can be easily distinguished by matching them to a
predefined dictionary, which is generated using the well-known Bloch
equation. The dictionary can be seen as a natural discretization of the
Bloch response. It contains fingerprints of all foreseeable combinations
of materials and system-related parameters. Each fingerprint corre-
sponds to a vector of parameters to be estimated (such as T1, T2, B0 and
proton density). A nearest-neighbor based method is used to select
the dictionary atom that best represents the observed fingerprint of a
query voxel. All the magnetic resonance parameters corresponding to
this dictionary atom can then be retrieved simultaneously. In this way,
a set of MR parameters are estimated at every voxel location. The
same procedure can be repeated to obtain MR parameter maps of all
slices of the scanned object.
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However, the MRF method still suffers from two problems:
(1) in order to balance the accuracy and the scanning time, the
MRF method significantly undersamples data in the k-space. Thus
the reconstructed images exhibit extreme aliasing artifacts, which
propagate to the estimated MR parameter maps. (2) The MRF
method selects the best atom whose parameters are closest to the
query fingerprint with the L2 distance. However, we observed that
the L2 distance is not always appropriate for retrieving the correct
fingerprint from the dictionary.

Recent developments in compressed sensing (CS) theory [13,14]
show that it is possible to reconstruct signals from highly under-
sampled data, which provides plausible solutions for the first problem.
So far, CS has been successfully applied to various domains in medical
imaging, e.g., MR Imaging [15,16], shape modeling [17–19] and optical
coherence tomography denoising [20].

Methods in [15,21] performed optimization with L1 and TV
norm regularizations by the Conjugate Gradient decent algorithm.
These two methods could effectively reconstruct MR images with
a sampling ratio around 20 %. Other methods like Lp quasi-norm
ðpo1Þ regularized optimization [22,23] tolerate lower compres-
sion ratios, but these non-convex algorithms do not always
recover global optima and are relatively slower. Ref. [24] adap-
tively learned the sparsifying transform (dictionary) and thereby
favoring higher sparsity and consequently higher sampling ratios.
Their reconstructions can achieve higher undersampling ratios
with tolerable errors. However, all these algorithms lead to alias-
ing artifacts if they are applied to the MRF method with a sampling
ratio of only around 3%.

To our knowledge, two previous methods [25,26] were proposed
to integrate a CS algorithm into the MRF framework. Ref. [25] pro-
posed to apply CS to reconstruct the image at each sampling time. But
the sampling ratio cannot be less than 70%. Ref. [26] adopted a CS
solution based on the iterative projection algorithm by [27] which
imposes consistency with the Bloch response manifold. At each
iteration, every voxel would be replaced by its nearest atom in the
dictionary. Then the whole image at each sampling time was updated
by the Projected Landweber Algorithm (PLA). This method is called
BLIP (BLoch response recovery via Iterated Projection), and is efficient
and effective in removing the aliasing artifacts.

Moreover, all the previous works [11,25,26] used inner-product for
calculating the similarities between the query fingerprint and the
dictionary atoms, which is equivalent to using the L2 distance as the
distance metric. However, we observe that if the distance metric is
learned in a supervised manner, then the performance of the nearest-
neighbor based dictionary matching can be significantly improved.

In this work, we propose a compressed sensing framework for
simultaneously estimating multiple MR parameter maps with dis-
tance metric learning. Instead of treating each voxel individually, we
assume that each image is sparse in some transform domain. The
problem of estimating MR parameter maps is then formulated as a
compressed sensing problem, where we make use of the spatial
information of the image sequence. For each voxel, its fingerprint is
then matched to its nearest atom in a predefined dictionary with a
learned distance metric. Such a learned metric is more accurate in MR
fingerprint matching. Furthermore, a novel sampling strategy based
on Cartesian sampling is proposed. Our strategy makes the aliasing
noise as incoherent as possible with the fingerprint itself, thus making
it easier to be removed. Extensive experiments were conducted on
simulated MR images to evaluate the performance of the proposed
method. Numerical results show that it outperforms state-of-the-art
methods in estimating multi-parametric MR maps of scanned objects.

In real scenarios, the ground truth MR parameter maps for dis-
tance metric learning can be obtained by applying standard MR
imaging approaches to volunteers or phantoms. The learned metric
can then be used for future scans under the same experimental
setting.
Our main contribution is three-fold: (1) we propose a com-
pressed sensing framework based on MRF that is more robust to
estimate multiple MR parameter maps of a scanned object at low
sampling ratios. It makes use of the spatial information of the image
sequence and is therefore accurate in estimating the MR parameters
when the sampling ratio is very low. (2) We improve the accuracy of
the dictionary matching process by replacing the L2 distance with a
learned distance metric. The proposed metric can be learned in a
supervised manner. (3) In order to make the undersampling errors
and the MR fingerprints as incoherent as possible, we design a
novel sampling strategy with which the sampling mask at time t is
conditional on the one at time t�1. It generates aliasing noise that
is easier to be removed by dictionary matching.
2. Methodology

In this work, we propose a novel framework to simultaneously
estimate multiple MR parameters for every voxel of a scanned
object based on the MRF method. In Section 2.1, the MRF method
and notation is introduced. In Section 2.2, we introduce a com-
pressed sensing framework for MRF to reduce errors. In Section 2.3,
we present adaptively learning a distance metric for dictionary
matching. A novel sampling strategy is proposed in Section 2.4
which further removes the aliasing noise.

2.1. Magnetic Resonance Fingerprinting (MRF)

The key underlying assumption in MRF is that different mate-
rials or tissues have their own unique signal evolutions or finger-
prints. The magnetization at a given voxel location at time t
depends on its magnetic resonance parameters and the system-
related parameters, including the flip angle FA, repetition time TR
and others, at time t�1. For illustration purposes, we explain the
estimation of MR parameter maps of only a single slice in Section 2.

Let XACN�T denote multiple scans of one slice of the object of
interest, where N is the total number of voxels in the slice and T is
the sequence length. Let Xi

tAC denote the ith voxel of the scanned
slice at time t, XiAC1�T denote the signal evolution or fingerprint
at voxel i at all times, and XtACN�1 denote the scanned image of
the slice at time t.

Given the initial magnetization, the signal evolution or finger-
print at voxel i can be written as

Xi ¼ ρiBðθi; FA; TRÞ; ð1Þ
where ρi is the proton density – one of the magnetic resonance
parameters to be estimated, θi is the collection of other magnetic
resonance parameters at voxel i, and B is the Bloch equation
dynamics.

Since the possible range of θi of the object is known in advance, we
densely sample each MR parameter and use the Bloch equation to
create the dictionary DACK�T , where K is the number of dictionary
atoms. Each dictionary atom is normalized so that JDk J2 ¼ 1, for
k¼ 1;2;…;K . The same set of system-related parameters FA and TR is
used for both creating the dictionary and obtaining the scanning data
X. Given a query fingerprint, it is matched to its nearest atom in the
predefined dictionary with the L2 distance. The index of the nearest
dictionary atom for the fingerprint Xi is denoted as ~ki, and is obtained
as

~ki ¼ argmin
k

JXi=‖Xi‖22�Dk J2 ð2Þ

~ki ¼ argmax
k

real〈Xi=‖Xi‖22;D
k〉

n o
; ð3Þ

where real is the operation to extract the real part of a complex
number and 〈�; �〉 is the inner product operation. The corresponding
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parameters of the fingerprint Xi are obtained as

~θ i ¼Γð ~kiÞ; ð4Þ
where Γ retrieves the MR parameters based on the dictionary index.
The proton density at voxel i is then estimated as

~ρi ¼max real〈Xi=‖Xi‖22;D
~ki 〉;0

n o
; ð5Þ

where the max operation is applied to remove unacceptable negative
values.

Only a limited portion of the k-space data is collected at each
time frame. Due to the undersampling, the image directly obtained
by the inverse Fourier transform will be contaminated with strong
aliasing artifacts.

2.2. Compressed sensing for Magnetic Resonance Fingerprinting
(CSMRF)

In this section, we propose a compressed sensing framework
based on MRF for simultaneously estimating multiple tissue-
related parameters with tolerance to very low sampling ratios.

For some fingerprint with minor aliasing noise, once it is
replaced by its nearest atom in the dictionary by Eq. (3), the
undersampling error at that voxel location is already eliminated.
This has been shown in [11].

However, the exact matching may fail because the query fin-
gerprint is impaired by significant undersampling errors. Instead
of treating the aliasing artifacts as random noise as in [11], we
treat it as the leakage of energy caused by undersampling, which
can be estimated by the theory of compressed sensing. Under this
assumption and some additional conditions, the missing signals
can be perfectly recovered. The problem of reconstructing under-
sampled k-space data can be formulated as a compressed sensing
problem:

min
Xt

JΦXt J1

s:t: ‖F uðXtÞ�Yt‖22oϵ; ð6Þ
where Fu is the Fourier transform operator with our proposed
sampling mask (the details will be described in Section 2.4), and Yt
is the k-space measurement at time t. Minimizing the J � J1 term
forces the image x to be sparse in some transform domain Φ. In
this work, we assume that the image is sparse in 2 domains, i.e.,
(1) the wavelet domain with Daubechies filters of 4 scales and
(2) the finite difference domain. The wavelet transform term often
results in the removal of high frequency noise-like patterns, while
the finite difference term favors solutions that are piecewise
smooth [15]. The ‖ � ‖22 term requires the image Xt, when trans-
formed back to the k-space, being consistent with the measure-
ment Yt. The ϵ controls the fidelity of the reconstruction to the
measured data. The optimization problem (6) can be rewritten in a
Lagrangian form:

X̂ ¼ argmin
Xt

‖F û ðXtÞ�Yt‖22þαJΦXt J1; ð7Þ

where α is a weight parameter. This problem can be solved by the
Conjugate Gradient algorithm [15].

Optimizing the compressed sensing problem can be considered
as utilizing the spatial information to remove aliasing artifacts in

the reconstructed images. After that the denoised fingerprint X̂
i
is

matched to the nearest dictionary atom with a learned Mahala-
nobis distance metric A, which can be written as

k̂i ¼ argmin
k

J X̂
i
=‖X̂

i
‖22�Dk JA; ð8Þ

The learning of the metric A is detailed in the next section. The
learned distance metric captures important dimensions of the
fingerprints in the temporal domain, and is more accurate than the
L2 distance used in previous work [11,26]. In this way, the tem-
poral information is also used in our framework.

Given the dictionary index k̂i, the tissue-related parameters θ̂
can be retrieved as

θ̂ ¼Γðk̂iÞ; ð9Þ

and the proton density is thus

ρ̂i ¼max real〈X̂
i
;Dk̂i 〉22;0

n o
: ð10Þ

To sequentially solve the two objective equations (7) and (8),
we propose an algorithm summarized in Algorithm 1. In the
initialization step (line 2–4), all the images X are obtained by
applying the inverse Fourier transform on the measurements Y in
the k-space. In the spatial update step (line 6–8), each image is
reconstructed by optimizing Eq. (7). In the temporal update step
(line 10–14), we match each fingerprint to its nearest atom in the
dictionary with the learned metric.

Algorithm 1. Compressed sensing for Magnetic Resonance Fin-
gerprinting with metric learning (CSMRFþML)
2.3. Distance metric learning for MR Fingerprint matching

To match a query fingerprint to a dictionary atom as shown in
Eq. (8), we propose to learn a Mahalanobis distance, with which
the query fingerprint is closest to its corresponding atom in the
pre-defined dictionary, to replace the L2 distance. This is because
the L2 distance might not be a proper metric for measuring the
dissimilarity between MR Fingerprints. In Fig. 1(a), we show such
an example where the L2 distance fails to retrieve correct MR
parameters for a query fingerprint corrupted by strong aliasing
noise. For the query fingerprint (red), its nearest dictionary atom
(green) with the L2 distance is quite different from its ground
truth atom (blue).

The Mahalanobis distance between normalized fingerprints X̂
i

(i.e., J X̂
i
J2 ¼ 1) and Dj is defined as

d2
AðX̂

i
;DjÞ ¼ ‖X̂

i�Dj‖2A ð11Þ
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Fig. 1. Simulated signal evolutions corrupted by strong aliasing noise. The experimental settings can be found in Section 3. (a) For the query fingerprint (red), its nearest
dictionary atom Dmin (green) with the L2 distance is quite different from its ground truth atom Dgt (blue). (b) After a distance metric is learned, the fingerprint and dictionary
atoms are transformed such that the ground truth atom Dgt (blue) is now nearest to the query fingerprint, while the nearest dictionary atom Dmin in (a) (green) is now quite
different from the query fingerprint. The plots are normalized w.r.t. their maximum values. (Best viewed in color). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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¼ X̂
i�Dj

� �T
A X̂

i�Dj
� �

ð12Þ

¼ X̂
i�Dj

� �T
WTW X̂

i�Dj
� �

¼ ‖WX̂
i�WDj‖22; ð13Þ

where the superscript T denotes the transpose, A is the learned
positive semi-definite matrix and W is the transformation matrix.
If A is the unit matrix, then the distance degenerates to the L2

distance. Note that since most distance metric learning algorithms
deal with real signals, we concatenate the real parts and the
imaginary parts of all training fingerprints. For illustration pur-

poses, we still use the notation X̂
i
and Dj in the remaining parts of

the paper. Note that all the data is preprocessed if the Mahalanobis
distances between them is calculated.

In this work, we adopt the Relevant Component Analysis (RCA)
[28] algorithm and found that it is superior than other distance metric
learning algorithms in our framework. The RCA requires training
samples (fingerprints) and their labels to learn an optimal distance
metric between them. The training fingerprints consist of fingerprints
from the image sequence and their corresponding dictionary atoms.
Labels are assigned to the training fingerprints in the following way.
Fingerprints corresponding to the same dictionary atom are given the
same label. The same label is also assigned to the corresponding
dictionary atom. Notice that although neighboring dictionary atoms
may also be good candidates for the query fingerprint, we do not
merge their labels. Dictionary atoms that have no corresponding fin-
gerprints are not included in the training samples. Those atoms may
represent materials or tissues rarely exist in the scanned object.

Let M denote the number of training fingerprints with L dif-
ferent labels, fPjignji ¼ 1 denote the fingerprints in the chunklet j,
where nj is the number of fingerprints in the jth chunklet. A
chunklet means a subset of fingerprints that are known to share
the same label.
The objective function of the RCA is formulated as

max
A

log jAj s:t:
1
M

XL
j ¼ 1

Xnj
i ¼ 1

‖Pji�Pj‖2Ar1; ð14Þ

where Pj is the mean of the jth chunklet.
Multiplying a solution A by a constant larger than 1 increases

the objective value as well as the constrained sum. Therefore, the
solution is obtained at the boundary of the feasible region, where
the inequality constraint becomes an equality, i.e.,

max
A

log jAj s:t:
1
M

XL
j ¼ 1

Xnj
i ¼ 1

‖Pji�Pj‖2A ¼ 1: ð15Þ

Solving the equality constraint leads to the solution, which is
linear in A. Let the within chunklet covariance matrix C be

C ¼ 1
M

XL
j ¼ 1

Xnj
i ¼ 1

ðPji�PjÞðPji�PjÞT : ð16Þ

The optimal transformation matrix is thus calculated as W ¼
C�1=2, which has large weights on relevant dimensions and small
weights on irrelevant dimensions.

As shown in Fig. 1(b), after a distance metric is learned for the
example in Fig. 1(a), the fingerprint and dictionary atoms are
transformed such that the query fingerprint is now most similar to
the ground truth atom.

Once the experimental parameters FA, TR and the under-
sampling pattern are determined, the learned distance metric can
be used again for future scans together with them. Another
observation is that the matrix have large entries in the main
diagonal, which agrees with the previous works [11,26] that the L2

distance is also a benign distance metric choice.
In practice, the distance metric can be learned in advance. First,

the MR parameter maps of either phantoms or volunteers can be
obtained by standard MR imaging methods. Then with fixed
imaging-related settings, such as FA, TR, and sampling strategy, the
MR fingerprints can be collected and used for training the distance
metric. The learned metric is applicable for later use under the
same experimental settings.
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Fig. 2. Illustration of how the sampling masks are generated at two consecutive times frames by the proposed sampling strategy. (a) The ðt�1Þth sampling probability.
(b) The ðt�1Þth sampling mask generated using the sampling probability in (a). (c) The tth sampling probability. The dashed arrows point to the probabilities that are forced
to be 0 because they are already sampled in (b). (d) The tth sampling mask generated using the sampling probability in (c).
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2.4. The time-dependent sampling strategy

We propose an undersampling strategy based on Cartesian sam-
pling, in which only the phase encodes are randomly sampled. Each
phase encode line is represented by a row in the k-space matrix. Due
to the sampling mechanism in MRI, unlike frequency encoding, each
phase encode line has to be entirely sampled, thus we cannot achieve
the random sampling in two directions which is assumed to be ideal
for compressed sensing. The method [15] on MR image reconstruction
has shown that the k-space should be sampled more at the lower
frequencies because most energy is concentrated around the k-space
origin. At the same time, the reconstruction of MR fingerprints
requires the aliasing noise at each time to be as incoherent as possible.

Here we propose a sampling strategy that takes both require-
ments into consideration. A sampling probability sp1 at time 1 is
first initialized following [15] such that it samples more near the k-
space origin. More specifically, the probability of sampling a row
scales according to a power of distance from the k-space (see Fig. 2
(a) for illustration). The sampling of each row of the mask at time
t�1 then follows a binomial distribution parametrized by the
probability value at that location. The sampling probability spt at
time t is conditional on the mask at time t�1. If some row on the
ðt�1Þth mask has been sampled, then the entry of the tth prob-
ability corresponding to the same location is set to zero, except for
the c rows nearest to the k-space center. Thus we force the con-
secutive sampling masks to be as different as possible, while they
still sample more data from the lower frequencies. The sampling
probability for the ith row in the k-space at time t is defined as

sptðiÞ ¼
sp1ðiÞ; iAC [ Mt�1

0 otherwise

(
ð17Þ

where spt is the probability at time t, C is the index set of the c
rows to be kept near the k-space origin, Mt�1 is the index set of
the rows that are sampled in the ðt�1Þth mask, and Mt�1 is the
complementary set of Mt�1. If c equals the total number of rows,
then all the sampling masks are independent. By controlling the c
value we can balance between the sampling of low frequency
parts and high frequency parts of the k-space data.
1 The code for generating the dictionary and fingerprint matching with L2

distance is obtained from supplementary information of [11]: http://www.nature.
com/nature/journal/v495/n7440/extref/nature11971-s1.pdf
3. Results

3.1. Experimental settings

3.1.1. Data
We tested our proposed method on anatomical brain phantoms

[29] that were downloaded from the BrainWeb repository [30].
The sizes of the original phantoms are 434�362 with 362 slices.
The 174th slice was used for training the distance metric. Slices
175–184 were used for testing the accuracy of our method and the
compared methods. Both training and testing brain phantoms
were rescaled and padded to 256�256 (Fig. 3).

The phantoms were restricted to contain 7 material compo-
nents as listed in Table 1. In order to simulate more realistic
images, we added variations to the parameter maps. The T1 map
was added by noise drawn from a standard uniform distribution
on an interval of 0–50 ms. The T2 map was added with noise
drawn from a standard uniform distribution on an interval of 0–
10 ms. The B0 map was added with noise drawn from a standard
uniform distribution on an interval of 0–10 Hz.
3.1.2. Dictionary generation
The four parameter maps were retrieved simultaneously from each

256�256 slice using our method. The parameter maps were
restricted so that T1 ranged from 300 to 4700 ms, T2 ranged from 45 to
600ms and B0 ranged from �100 to 200 Hz. The size of the designed
dictionary was 48� 53� 41� T , where T is the sequence length.1

The entries for T1 were sampled from 300 to 1000ms with an
increment of 30 ms, from 1000 to 2500ms with an increment of
100 ms, and from 1500 to 4700 ms with an increment of 300 ms. The
T2 values are sampled from 45 to 100 ms, 320 to 370ms with an
increment of 10 ms, from 110 to 320ms, and from 380 to 630ms with
an increment of 50 ms. The B0 values are sampled from �200 to
200 Hz with an increment of 10 Hz. To make the simulation more
close to the real scenarios, both the parameter maps and the dic-
tionary were designed so that no exact fingerprint match can
be found.
3.1.3. Sequence setting
We simulated the signal evolutions with the IR-bSSFP sequence

using a randomized series of flip angles and repetition times of
10 ms. While we also experimented with randomized repetition
times, no significant performance change was observed. Let η be
the noise term sampled from a Gaussian distribution with a
standard deviation of 5 ms. The flip angles, FA, are calculated as a
series of repeating sinusoidal curves added with Gaussian random

http://www.nature.com/nature/journal/v495/n7440/extref/nature11971-s1.pdf
http://www.nature.com/nature/journal/v495/n7440/extref/nature11971-s1.pdf


Fig. 3. The segmented anatomical brain phantom [29] colored by index:
1¼Background, 2¼CSF, 3¼Grey Matter, 4¼White Matter, 5¼Fat, 6¼Muscles,
7¼Muscles/Skin. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

Table 1
Tissue types used from segmented brain phantom.

Tissue Index T1 T2 B0 Density

Background 1 0 0 0 0
CSF 2 4231 572 185 1
Gray matter 3 833 86 �30 0.86
White matter 4 500 55 �70 0.77
Fat 5 350 70 �80 0.7
Muscle 6 900 47 �40 1
Muscle/skin 7 2269 329 75 1
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noise, i.e.,

FAðtÞ ¼
10þ sin ð2πt=500Þ � 50þη; 0otr250
10; 250otr300
5þ sin ð2π=200� 25Þþη; 300otr500

8><
>:

3.1.4. Evaluation metrics
The quality of the MR parameter estimation is quantified using the

Peak-Signal-to-Noise-Ratio (PSNR) in decibels and the Structural
SIMilarity (SSIM) index [31]. When computing PSNR, the MR para-
meter maps are first normalized to the range of [0,255]. PSNR is then
computed as the ratio of the peak intensity value of the ground truth
to the Mean Square Error (MSE) reconstruction error relative to the
ground truth. The SSIM index is developed as a complementary
approach to the traditional metrics based on error-sensitivity. It has
been shown to be more consistent with human eye perception [31].
Unlike PSNR which estimates perceived errors, SSIM considers image
degradation as perceived change in structural information. The SSIM
index is a decimal value between �1 and 1, and value 1 can only be
reached when two images are identical.

3.1.5. Compared methods
Our proposed CSMRFþML was able to recover the MR parameter

maps accurately. We compared it with the MRF [11] and BLIP [26]
methods. For simplicity and better comparison, the proposed sam-
pling strategy is used for MRF. For BLIP, the uniform sampling strategy
based on EPI is used as in [26], i.e., the rows in k-space are under-
sampled by a factor p with random shifts across time. In some
experiments, we also reported the performance of the oracle esti-
mator, which was obtained by matching the fully sampled image
sequence data to the nearest dictionary atoms using the L2 distance
metric. Because the oracle estimator samples all the data, it should
always achieve the best estimation results if the dictionary is correctly
created. In this way, we could differentiate the errors caused by the
Bloch response discretization and those by the other factors.

3.2. Overall performance and comparisons with existing methods

The overall performance of our method and the compared MRF
[11] and BLIP [26] methods is reported in this section. We set the
sequence length T to 500, with a sampling ratio of 6.25% (16 rows
out of 256). The c value in Eq. (19) is chosen to be 6. All the
experiments were performed on 10 different slices, and the aver-
aged results were reported in Table 2 (also see the visual com-
parisons in Figs. 4–7). As expected, the oracle estimator achieved
the best result among all methods because it does not under-
sample the k-space data. Our proposed method CSMRFþML per-
forms best compared to MRF and BLIP on the estimation of T1, T2
and off resonance frequency maps, while the accuracy improve-
ment of proton density maps is slightly lower than BLIP. This is
because the proton density depends on the product of the query
fingerprint and the matched dictionary atom, although our
methods can find better matches than MRF, the final result will
still be affected by the shrinkage effect of undersampling, even
after the density compensation is applied to the k-space. And since
BLIP iteratively updates the fingerprints by alternatively projecting
them to the Bloch response manifold and minimizing the recon-
struction error, it can estimate the proton density map better. BLIP
shows better accuracy than MRF. However, its performance is not
stable and depends on the randomness of its sampling masks
because the sampling strategy used by BLIP does not have con-
straints on sampling masks at consecutive times.

Figs. 4–7 show example estimated maps by different algorithms.
MRF and CSMRFþML share the same set of sampling masks by
Eq. (19), while BLIP uses uniformly undersampling strategy based on
EPI. We set BLIP to run 16 iterations, and no significant improvement
is observed if more iterations of operations are performed. The result
of MRF shows substantial aliasing artifacts. BLIP successfully removes
most of the aliasing noise, while the estimated T1, T2 and off resonance
frequency maps of CSMRFþML exhibit almost no aliasing artifacts.
The proton density map of CSMRFþML is slightly overestimated due
to the shrinkage effect.

3.3. Performance with noise

To evaluate the noise robustness of the proposed method, we
added zero-mean complex Gaussian noise of standard deviation σ ¼
0:5 to the k-space of all the frames. An example of the fully sampled
noisy frame at time 1 is shown in Fig. 8(a), and can be observed to be
considerably noisy. The PSNR of the noisy image with respect to the
reference is 19.1 dB. The distance metric is trained with another set of
images contaminated by the same type of noise but with different
random seeds. Here we show the estimated T2 maps by MRF, BLIP and
CSMRFþML in Fig. 8(b)–(d). The results show that MRF is unable to
effectively remove the noise. BLIP performs better than MRF and show
a clearer reconstruction result. However, there still exists certain
amount of noise. Our methods CSMRFþML on the other hand gen-
erates a satisfactory result. Almost all the noise is eliminated except for
some on the boundaries. The PSNR and SSIM of CSMRFþML is 4.2 dB
and 0.083 higher than BLIP, respectively, which shows that CSMRFþ
ML can perform better in the presence of reasonable amount of noise.

3.4. Evaluation on different components

In this section, the effect of each individual parameter is investigated.
We compare CSMRFþML and the state-of-the-art methods against



Table 2
Quantitative results of the proposed algorithm and the state-of-the-art algorithms. The winning entries are marked in bold.

Method T1 map T2 map B0 map Density map

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Oracle estimator 42.8 0.99 40.6 0.99 52.0 1.0 92.6 1.0
MRF 27:070:54 0:9570:02 22:970:32 0:8670:06 24:870:51 0:8970:03 23:670:23 0:8770:02
BLIP 30:271:66 0:9670:12 26:870:81 0:8670:07 28:271:12 0:9070:05 28:670:96 0:8870:04
CSMRFþML 31:170:87 0:9970:01 37:370:76 0:9970:01 39:970:64 0:9970:01 25:870:46 0:9270:04

Fig. 4. Example estimated T1 maps with a sampling ratio of 6.25%. (a) Ground truth. Results by (b) MRF [11], (c) BLIP [26] and (d) CSMRFþML. All the images are displayed in
the same color range. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 5. Example estimated T2 maps with a sampling ratio of 6.25%. (a) Ground truth. Results by (b) MRF [11], (c) BLIP [26] and (d) CSMRFþML. All the images are displayed in
the same color range. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 6. Example estimated B0 maps with a sampling ratio of 6.25%. (a) Ground truth. Results by (b) MRF [11], (c) BLIP [26] and (d) CSMRFþML. All the images are displayed in
the same color range. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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different sampling ratios in Section 3.4.1, and against different sequence
lengths T in Section 3.4.2. In Section 3.4.3, we compare the proposed
sampling strategy with a baseline strategy. The effect
of different c values of our strategy is also investigated. In Section 3.4.4,
different distance metric learning algorithms are tested for CSMRFþML.
3.4.1. Evaluation on sampling ratio
In this section, we evaluated the estimation accuracy of our algo-

rithmwith different sampling ratios. Recall that the images are of size
256� 256. We experimented with sampling ratios of 3.13%, 3.91%,
4.69%, 5.49%, 6.25%, 7.03% and 7.81% (which are equivalent to 8, 10, 12,



Fig. 7. Example estimated density maps with a sampling ratio of 6.25%. (a) Ground truth. Results by (b) MRF [11], (c) BLIP [26] and (d) CSMRFþML. All the images are
displayed in the same color range. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 8. (a) Fully sampled noisy frame at time 1. T2 maps reconstructed by (b) MRF [11], (c) BLIP [26] and (d) CSMRFþML. All the image are displayed in the same color range.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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14, 16, 18 and 20 rows per image), respectively. We report the PSNR of
the estimated MR parameter maps vs. the sampling ratios here.

In Fig. 9, we show that the overall estimation accuracy
increases as the sampling ratio increases for all the MR parameter
maps. Interestingly, BLIP has a performance boost at sampling
ratios of 3.13% and 6.25% (8 and 16 rows per image). This may be
because the sampling strategy used by BLIP requires under-
sampling the k-space uniformly with random shifts across time.
Ideally, each row should have the same chance to be sampled
during the whole process, which will maximize the randomness of
different sampling masks. However, if the number of rows to be
sampled is not divisible by the total number of rows (e.g. sampling
12 out of 256 rows), then some rows might never be sampled,
which leads to degraded performance. Note that in [26], only
sampling ratios of 6.25%, 12.5% and 25% are shown.

With metric learning and the proposed sampling strategy,
CSMRFþML always performs best. Since CSMRFþML uses a non-
uniform sampling strategy, it does not suffer from the problem
described above. It can achieve satisfactory and stable recon-
struction quality at arbitrary sampling ratios in our experiments.

3.4.2. Evaluation on sequence length
This experiment evaluated the performance of the proposed

algorithm with different sequence lengths, which varied from 100
to 500. While we also tested longer sequence, no significant per-
formance improvement is observed.

In Fig. 10, both the mean value and the standard deviation of 10
trials by each algorithm are plotted. PSNR of the estimated parameter
maps by all the algorithms increase as the sequence length increases.
Notice here we do not include PSNR of the oracle estimator in Fig. 10
(d) for the visualization purpose (it ranges from 90 to 91 dB, far
greater than the other algorithms). It can be seen that CSMRFþML is
stable and outperforms the other algorithms except for the density
maps. MRF behaves not so well yet stably. It cannot effectively make
use of the spatial information of the image and the L2 distance often
fails to match query fingerprints to correct dictionary atoms. BLIP is
better but unstable (i.e., having large variance) when the sequence
length is short. This can be explained by the fact that its sampling
strategy is independent each time and does not force to have different
spatial encodings. This problem can be alleviated when a longer
sequence is used. Furthermore, the PSNR of T1, T2 and B0 maps by
CSMRFþML are close to the oracle estimator when the sequence
length is no fewer than 500, which means that they are visually very
close to the ground truth without obvious aliasing artifacts or noise.

3.4.3. Evaluation on sampling strategies
In order to test whether our proposed sampling scheme

influences the performance of estimating multiple MR parameter
maps, we compared the proposed sampling strategy with a
baseline sampling strategy with an equivalent undersampling
ratio of 4.69%. The baseline sampling strategy is to sample the k-
space independently at each time, which follows a variable density
random sampling pattern as the first sampling mask in our
approach. It does not force choosing different rows of the k-space
data at two consecutive time frames. All the experiments were
repeated on 10 different slices. Each entry in Table 3 was obtained
by averaging the results of the 10 slices.

In Table 3, we show the quantitative results of the proposed
sampling strategy and those of the baseline strategy. The performance
of the proposed sampling strategy was tested on both the MRF
method and our proposed CSMRFþML. We show that the baseline
sampling strategy leads to not the best, yet stable results, which
denotes that totally independent random variable sampling can
guarantee a satisfactory performance.

The proposed sampling strategy results in better accuracy of
parameter map estimation because our strategy increases the inco-
herence between the noise and the fingerprints. When c in Eq. (19) is
4, i.e., the probabilities of sampling the center 4 rows on the mask are
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Fig. 9. Estimation accuracy vs. the number of rows sampled per slice. Both mean value and standard deviation are plotted. (a) PSNR for estimated T1 maps with varying
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for estimated proton density maps with varying sampling ratios.
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Table 3
Comparisons of the proposed sampling strategy with the baseline strategy. The baseline strategy undersamples the k-space independently at each time. Different c values of
our proposed sampling strategy were chosen to study how the sampling ratio between low frequency components and high frequency components would affect the results.
The winning entries are marked in bold.

MRF CSMRFþML

Parameter type T1 T2 B0 proton density T1 T2 B0 proton density

Evaluation metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baseline 24 0.921 20.6 0.831 22.9 0.864 20.6 0.822 33.9 0.981 31.2 0.983 39.0 0.979 22.1 0.808
Proposed, c¼2 26.4 0.952 21.8 0.852 24.3 0.892 21.8 0.864 29.7 0.967 35.9 0.98 32.4 0.955 27.7 0.873
Proposed, c¼4 26.5 0.943 21.3 0.852 22.5 0.881 21.9 0.862 30.0 0.975 35.6 0.977 39.9 0.985 24.7 0.872
Proposed, c¼6 27.9 0.947 20.1 0.825 20.3 0.845 21.2 0.864 30.1 0.969 35.2 0.982 41.8 0.991 25.2 0.866
Proposed, c¼8 26.6 0.945 20.6 0.839 23.7 0.899 20.4 0.855 30.7 0.975 34.6 0.982 38.1 0.983 23.4 0.851
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fixed while other rows are dependent on the previous mask, the
proposed sampling strategy achieved the best performance. Since our
sampling ratio is 4.69%, only 12 out of 256 rows of the k-space data
would be sampled. That means when c is 8, there are only about
4 possible rows to choose from the high frequency parts of the k-
space. On the contrary, when c is 2, the low frequency parts are
sampled too few. In both cases, the performance drops because of the
inappropriate ratio of low frequency against high frequency.

3.4.4. Evaluation on distance metric learning methods
Our proposed algorithm can be combined with various distance

metric learning algorithms. Here we focus on their performance on
estimation of T1 map (note that similar performance was observed for
the T2 and proton density maps). We compared the L2 distance with
the distance metric learned by RCA [28], the Discriminative Compo-
nent Analysis (DCA) [32] and the Local Fisher Discriminant Analysis
(LFDA) [33]. The full-sized matrix is of 1000�1000 because the real
part and the imaginary part of the training samples are concatenated.
However, all these metric learning algorithms are able to learn a
dimension-reduction transformWART � �1000, where T � is a number
smaller than 1000. While we also tried different T � values for dif-
ferent algorithms, no significant difference was observed until T � is
below 500, where the performance began to degrade. For a fair
comparison on these metric learning algorithms, we learned a full-
sized matrix for each of them.

In Table 4, we show the PSNR and SSIM of the parameter maps
estimated by our algorithm with different metric learning algorithms.
The performance of CSMRF with the L2 distance is listed as the
baseline. DCA only improved the baseline a little while RCA performed
best in our framework. The reason RCA works better than other dis-
tance metric learning algorithms might be that it does not force the
samples with different labels to be far away from each other. This is
consistent with our observations: a different sample may come from a
neighboring dictionary atom, which is also a good approximation of
the ground truth.
4. Discussions and conclusions

(1) The learned distance metric: The success of applying metric
learning to MRF indicates that some dimensions may be more useful
than others for matching MR Fingerprints to the dictionary atoms and
there exist correlations between each dimension. Although learning a
distance metric offline can discover important information in MR
Fingerprints and may well tackle this problem, the collection of the
ground truth data from phantoms or volunteers will take additional
efforts. Moreover, calculating the Mahalanobis distances for each
query fingerprint with all the dictionary atoms is more time con-
suming than their inner-products. Therefore, a better solution may be
to specifically design the pulse sequence so that the MR Fingerprints
of interest can be best distinguished with the inner-product.

(2) Compressed sensing algorithm: Currently the Conjugate Gra-
dient descent with backtracking line search is used to optimize the
proposed objective function. We will investigate more recent opti-
mization methods for compressed sensing algorithms (e.g., [21,24]).
Moreover, the compressed sensing step requires many empirically set
parameters, such as the line search iterations and the step size. A



Table 4
PSNR and SSIM of the estimated T1 map with different distance metric learning
algorithms.

Distance metric PSNR SSIM

L2 distance in [11] 23.3 0.80
RCA [28] 32.3 0.98
DCA [32] 24.6 0.89
LFDA [33] 31.5 0.98
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possible research direction may be to design a systematic way of
determining all such parameters.

(3) The proposed sampling strategy: In our proposed sampling
strategy, we empirically choose the c value, which is equivalent to
the number of rows near the k-space origin. We observe that when
the sampling ratio is small (e.g. 8 out of 256 rows), the c value
should be closer to the total number of rows to be sampled. This is
because in this case, if more low-frequency data (a larger c value)
are sampled, the image would be smoothed out and thus contains
less noise. On the contrary, if more rows are allowed to be sampled
(e.g., more than 32 out of 256 rows), then the c value does not
have to be too large. Generally, the users can set it according to the
sampling ratio or by cross validation.

The proposed Cartesian-based sampling scheme in this study is
quite different from the non-Cartesian sampling proposed for the
original MRF study, and its implementation in various MR pulse
sequences should be carefully considered in practice. For the normal
spin-echo and gradient-echo pulse sequences widely used for clinical
morphological imaging, the implementation of the proposed sampling
scheme is highly practical because these sequences usually utilize
phase-encoding gradient lobe and phase-encoding rewinding lobe
pair prior and posterior to each echo acquisition. The frequency-
encoding (or readout) gradient would not be lengthened. This
implementation is also applicable for fast spin-echo sequences with
multiple k-space row acquisition in each shot. The index sets for all
time frames could be calculated once prior to acquisition and then
applied to each time frame. Alternatively, the index set for each time
frame t�1 could also be recorded for the calculation of the sampling
mask for the next time frame t. It is worth noting that this Cartesian-
based sampling scheme is technically challenging, so may not be
suitable for echo planar imaging (EPI) sequence and gradient and spin
echo (GRASE) sequence (either single-shot or multi-shot), in which
gradient echo trains are used for frequency-encoding, and phase pre-
winder lobe and small blip gradients are used for phase encoding. In
these sequences, to achieve the proposed sampling mask, blips with
different areas have to be used to skip some k-space rows due to the
non-continuous k-space sampling. In this case, the large blip gradient
lobes could inevitably prolong the required readout slope and hence
the total gradient echo train duration, leading to more severe image
distortion, SNR reduction and many other artifacts such as ghosting.
Nevertheless, the implementation of our proposed method involves
tremendous efforts in pulse sequence development and its perfor-
mance on prospectively undersampled real MRI data has to be thor-
oughly validated in future works.

The main difference between CSMRF-ML and BLIP is that we
learned the distance metric from the data instead of a pre-defined
one. This new metric allows us to better match the fingerprints to the
dictionary atoms. Besides, we explicitly ask the reconstructed images
to be sparse in some transform domain while BLIP tried to apply the
sparse prior on the proton density maps and found no significant
improvement. We also proposed a variable density randomized
sampling strategy while BLIP adopted a uniform sampling strategy.

The MRF method is a new approach to magnetic resonance and
not fully exploited yet. In this work, we propose a compressed sensing
framework for MRF with distance metric learning. A novel algorithm
is proposed to reconstruct the undersampled data and estimate the
MR parameters. It first solves the compressed sensing optimization
problem and then projects the signal evolution to the Bloch response
manifold with a learned distance metric. Thus the solution benefits
from both temporal and spatial regularization. A novel sampling
strategy is also proposed for maximizing the incoherence between the
fingerprint and the aliasing error on it. We conducted numerical
simulations to demonstrate the effectiveness of our framework. When
compared with MRF [11] and BLIP [26], our algorithm outperforms
them in terms of accuracy of parameter map estimation.
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